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Abstract. Delayed-state decentralised data fusion (DS-DDF) is proposed as a
general methodology for consistent DDF, which does not impose constraints on
network topology. The resulting estimates, although lagged in time, are optimal,
equal to a centralised solution. The method is demonstrated in the context of
dynamic node tracking and localisation, where a team of mobile robots track each
other’s position to obtain a joint estimate of the position of every team member.

1 Introduction

Consider a scenario where a team of mobile robots travel throughout
an environment, communicating with each other over an ad hoc net-
work. All are equipped with odometry and a ranging sensor capable
of measuring the range to other robots. Some have GPS receivers,
others do not. The task then is to enable each robot to estimate its
own location and that of every other robot in the network.

A centralised solution is trivial. Each robot simply forwards all
of its measurement data to a central server, which performs con-
ventional data fusion to obtain a joint estimate over the poses of
all robots. Individual robots can then request estimates from the
server. However, the disadvantages of a centralised architecture in-
clude (i) high bandwidth requirements, especially for transmission
of high-frequency motion data, (ii) limited range since each robot
must be within communication range of the server (or, alternatively
be able to reroute or forward data via intermediate nodes), and (iii)
robustness issues because server failure means the whole system fails.

Decentralised data fusion (DDF) overcomes the weaknesses of
centralised fusion and provides scalable, modular fusion capabilities
[1,2]. Localised fusion distributes the computational load, peer-to-
peer communications minimises bandwidth, and multiplicity of nodes
provides redundancy and robustness to node failure.

This paper introduces to DDF the concept of delayed states,
where past estimates are retained in the joint state vector to cap-



ture historical dependencies or correlations, and to permit fusion of
data involving multiple nodes, such as range measurements. A mo-
tivating example of delayed-state DDF (DS-DDF) is provided by a
multi-robot tracking and localisation scenario in which a team of ro-
bots track each others position to provide localisation information
for the network as a whole. However, we stress that the concept of
DS-DDF is general and not limited to a particular structure.

The format of the paper is as follows. The next section discusses
previous work that influenced the development of DS-DDF. Section 3
presents the essential canonical-form operations for estimation and
their properties. Section 4 applies DS-DDF to the problem of track-
ing a dynamic network of mobile robots, and the following section
provides a simulation experiment of this scenario. Section 6 discusses
improvements to the dynamic network implementation and further
application domains for DS-DDF. The final section concludes with a
summary of the key points.

2 Related Work

The primary influence on this current work is from recent research
in simultaneous localisation and mapping (SLAM). This literature
provides two key concepts. First is the idea of delayed (or deferred)
states for managing historical dependencies. Delayed states are used
for landmark initialisation [3–5] in situations when data must be ac-
cumulated over a period of time before the landmark becomes fully
observable. The second contributing factor is the sparse canonical-
form1 representation of the SLAM problem [6–8], which demonstrates
that efficient operations are possible when representing a Gaussian
distribution in canonical form. In particular, augmenting the state
and applying fusion updates can be very cheap (i.e., constant-time
operations) if they operate over a small portion of the state vector.

Another significant influence is the more conventional form of
estimation-theoretic DDF [1,2], which also uses the canonical-form
Gaussian representation, primarily because it permits efficient addi-
tive fusion. Conventional DDF is optimal but restricted to networks
that are either fully connected or possess non-cyclical topologies. In
the latter case, channel filters are used to keep track of common infor-
mation between nodes. When applied to decentralised target-tracking
problems, this form of DDF also suffers from double counting of com-

1 Canonical-form is also known as information-form.



mon prediction information, which previously has either been ignored
or mitigated by covariance inflation heuristics.2

DS-DDF departs from conventional DDF by maintaining a history
of past states rather than just the most recent momentary state.
These past states are able to capture the contributions of individual
nodes, providing an intrinsic record of common information, and so
avoids the need for channel filters and restricted topology.

3 Essential Properties of the Canonical-Form
Gaussian for DS-DDF

The properties of DS-DDF arise directly from the properties of the
canonical-form Gaussian representation and, particularly, the form
of the three essential operations for estimation: augmentation, mar-
ginalisation and fusion. These operations permit construction of a
sparse joint information matrix. Furthermore, the augmentation and
fusion operations are additive and, under mild conditions, their con-
tributions may be separated into constituent parts.

Sparseness of the information matrix and the ability to separate
and reconstruct components of the joint estimate are the fundamental
properties of the DS-DDF paradigm.

3.1 Augmentation, Marginalisation and Fusion

Given a joint state vector,

x =
[
x1

x2

]
, (1)

where x1 and x2 are sub-vectors, the canonical-form representation
of a Gaussian probability distribution N (x; ŷ,Y) over these states is
given by an information vector,

ŷ =
[
ŷ1

ŷ2

]
, (2)

2 This problem, although mentioned in [2, page 6], is different from the rather
simpler “common process model” problem described in [2, Section 2.4.4]. It
arises also in centralised track-to-track fusion [9]. As discussed later in this
paper, the problem is due to premature marginalisation of past estimates, and
can be resolved with delayed states, which keeps the process information in a
separable form.



and an information matrix,

Y =
[
Y11 Y12

YT
12 Y22

]
. (3)

These canonical-form terms are related to the more conventional
moment-form Gaussian representation according to Y , P−1 and
ŷ , Yx̂, where x̂ is the mean vector and P is the covariance matrix.

To extend or augment the state vector as a function of sub-states
x2 and some independent random variable u,

xa =




x1

x2

x3 = f (x2,u)


 , (4)

the canonical-form estimate is augmented as,

ŷa =




ŷ1

ŷ2 −∇fT
x2

U−1[f(x̂2,u)−∇fx2x̂2]
U−1[f(x̂2,u)−∇fx2x̂2]


 , (5)

Ya =




Y11 Y12 0
YT

12 Y22 +∇fT
x2

U−1∇fx2 −∇fT
x2

U−1

0 −U−1∇fx2 U−1


 , (6)

where∇fx2 = ∂f
∂x2

and U is the uncertainty in u. The above equations
actually represent a simplified augmentation operation, x3 = f(x2)+
u. The more general form in (4) requires a trivial, though cluttered,
extension replacing each instance of U−1 with (∇fuU∇fT

u )−1.
The sub-states x2 can be removed from (1) by marginalisation

using the following canonical-form expressions,

ŷ1m = ŷ1 −Y12Y−1
22 ŷ2, (7)

Y11m = Y11 −Y12Y−1
22 YT

12. (8)

Data fusion occurs when an observation z is made according to some
function of the state. If the observation model refers only to the sub-
states x2 in (1),

z = h (x2) + r, (9)

where r is zero-mean Gaussian noise with covariance R, then obser-
vations are fused according to,

ŷ+ =
[

ŷ1

ŷ2 +∇hT
x2

R−1z

]
, (10)

Y+ =
[
Y11 Y12

YT
12 Y22 +∇hT

x2
R−1∇hx2

]
. (11)



3.2 Properties of Estimation Operations

Equations (4–11) make apparent several key properties of the canon-
ical form. For this discussion, let the sub-states x1 comprise the bulk
of the state-vector, such that dim(x2) ¿ dim(x1).

Augmentation (5, 6) is additive and sparse. The bulk of the ex-
tension to the information matrix is zeros. The change to Y22

is additive and the quantity of this additive term is recorded in
the off-diagonal term −∇fT

x2
U−1, permitting later separation of

factors.
Marginalisation (7, 8) is not additive and removing any element

will change the value of all other elements linked to it.3 Marginal-
isation also introduces a clique of new links between any elements
originally linked to the removed element. States that were not
linked to the removed element are not affected.

Fusion (10, 11) is additive and affects only those states directly in-
volved in the observation model.

Augmentation and fusion, being additive and localised in their
effect, permit decomposition of the joint estimate into constituent
parts. This can be achieved with minimal auxiliary bookkeeping, since
much about the individual contributions is recorded implicitly in the
off-diagonals of the information matrix.

Consider, for instance, a set of fusion operations involving three
nodes A, B, and C. At time k, node A observes the range to B and
C, and node B observes the range to C. The observation model for a
measurement from A to B is given by,

z = h (xa,xb) + r =
√

(xb − xa)2 + (yb − ya)2 + r, (12)

with r being zero-mean noise with variance R. Its Jacobian is

∇hxab
= [Hab,−Hab], (13)

where

Hab =
∂h
∂xa

∣∣∣∣
(x̂a,x̂b)

=
[

(x̂b − x̂a)
h (x̂a, x̂b)

,
(ŷb − ŷa)
h (x̂a, x̂b)

, 0, 0
]

, (14)

3 A very useful property of the canonical-form Gaussian representation is the
exact analogy between the information matrix and an undirected graphical
model. A diagonal (or block-diagonal) value in the matrix corresponds to a
vertex in the graph and a non-zero off-diagonal value corresponds to a link
between two vertices. Thus, we use the term “link” to refer to non-zero off-
diagonal values.



assuming here that each node’s momentary state is composed of posi-
tion and velocity, xk = [xk, yk, ẋk, ẏk]T . After the three observations,
the joint information matrix for states [xT

a ,xT
b ,xT

c ]T is



Iab + Iac −Iab −Iac

−Iab Iab + Ibc −Ibc

−Iac −Ibc Iac + Ibc


 , (15)

where Iab = HT
abR

−1Hab. Notice that the diagonal elements are al-
ways positive and the off-diagonal elements record the individual con-
tributions.

The separability of augmentation and fusion operations permits
considerable flexibility in manipulating the joint state estimate; the
information matrix may be sliced into sub-matrices, operated on in
parts, and reconstituted into a joint representation. Marginalisation,
on the other hand, is not additive or separable and must be applied
with care. Recent SLAM research [6–8] shows that marginalisation
tends to increase the density of the information matrix and should
be avoided for computational reasons. For DDF, separability is a
greater issue; the values for all states that were linked to an element
removed by marginalisation become correlated and mixed together.
Fortunately, for DDF, the augmented joint estimate captures all avail-
able information and marginalisation is never necessary, except for
computational tractability, and can be applied judiciously to states
whose information is truly obsolete.

4 Tracking and Localisation in a Dynamic Network

The scenario described at the beginning of this paper is an instance
of a dynamic network, where moving nodes track the state of other
nodes in the network. The objective then is for all robots to localise
the entire team in a decentralised manner. This looks like a SLAM
problem in which the other robots are both landmarks, which are in
motion, and localisers in their own right. The complexity of this sce-
nario arises because of the range measurements. Without range mea-
surements each robot’s state would be independent of the rest; but,
of course, this also means those robots without GPS would have no
notion of their location. The introduction of relative measurements,
each involving a pair of robots, correlates the entire system.

This example is a very simple illustration of DS-DDF insofar as it
involves only basic decomposition of the joint state estimate, and does



not exploit fully the separation possibilities available. However, im-
plementing even this simple example involves significant bookkeeping
to keep track of node identities and timestamps. There are also vari-
ous subtleties, particularly regarding marginalisation and its effect on
adjacent states. Due to limited space, these important but incidental
details are omitted, so as to focus on the essential concepts.

4.1 Own-State Estimation

Each node has three sources of information: odometry, GPS and range
measurements to other nodes. The range data is not used directly but
is instead communicated to all nodes in the network as it is obtained.
Odometry and GPS, on the other hand, are fused locally. Odometric
data uk is used to augment the node’s estimate of itself according
to its motion model, xk+1 = f (xk,uk). The augmented “own-state”
estimate forms a Markov chain, as shown in Fig. 1(a), where each
momentary state is linked only to the states immediately before and
after it. A GPS measurement, if received at time k, updates the esti-
mate of the momentary state for time k.

(a) Own-state estimate

(b) Own-state packets

Fig. 1. Node B estimates its own state, augmenting the state vector with
each motion measurement and fusing GPS, if available. It marks those
states with associated range measurements (a), removes irrelevant states,
and generates state packets (b).

As a node receives packets of range data from all nodes, includ-
ing itself, it notes the subset of ranges involving itself. These are its
own range measurements observing other nodes, and measurements
from other nodes observing it. The timestamps of these measurements
define which of its own-states are relevant for joint fusion. Since mo-
tion data (odometry) is typically much higher frequency than range
measurements, the great majority of own-states are irrelevant, and



these are marginalised away. The remaining states are formed into
own-state packets, as shown in Fig. 1(b).4 Once packetised, an old
own-state has no influence on future own-states and the node can
simply “forget” past states by removing them from its Markov chain.

Each packet must include at least two momentary states. The first
momentary state in each packet has the same timestamp as the last
momentary state in the preceding packet.5 Thus, a sequence of own-
state packets from a particular node permits recovery of the complete
own-state Markov chain by connecting the common “stub-states” in
each packet; the beginning stub-state of the later packet overwrites
the last stub-state of the previous packet.

4.2 Joint Estimation

A node accumulates own-state packets from all nodes, including itself,
and forms them into a joint estimate by chaining stub-states as shown
in Fig. 2(a). Range data is then fused, which links the two momentary
states from the associated nodes and timestamps, as between A3 and
B3 in Fig. 2(b). The result is a reconstructed joint state as if from
conventional centralised data fusion. (Note, range data fusion cannot
involve stub-states as this would prevent connection to the next own-
state packet. Range fusion is deferred until both states are not stubs.)
Older joint states that are not stub-states and not directly linked to
a stub-state are obsolete and can be removed by marginalisation as
shown in Fig. 2(c).

4.3 Communication Strategies

The essential property for communications is that each packet of
range data and own-state data reaches every node in the network.
Nodes need not communicate directly with every other node, since

4 Marginalisation and packetisation can only occur up to a time-horizon—the
timestamp for when the node knows it has been notified of all range measure-
ments referring to itself.

5 The value of the beginning stub-state estimate is typically not the same as
the last stub-state of the preceding packet. During joint estimation, a moment-
form estimate (i.e., mean and covariance) might be required for linearisation or
visualisation purposes. To recover this from the canonical-form, the last stub-
state must be made a “terminal” stub-state—a state that is not tied to a later
state—but, when a sequence of own-states is extracted from the middle of the
Markov chain, the last state includes prediction information linking it to the
next state. The last stub-state is therefore modified to remove this information.



(a) Augment

(b) Fuse ranges (c) Marginalise

Fig. 2. Joint fusion augments the state with new state packets (a), con-
necting stub-states. It then fuses any range data not involving stub-states
(b), and removes older states (c). The parts of the state affected by each
operation are shown in red.

packets may be forwarded via intermediaries. Various communica-
tions strategies are possible, including packet tagging and request-
reply handshaking between peers. The method implemented for this
paper was a simple bookkeeping strategy, which tracks the last sender
for each packet and records the latest direct communications for each
node. The result is redundant packet forwarding—each node receives
every packet, but some packets are received multiple times—which
exhibits minimal redundancy if each node keeps to a fixed neighbour-
hood of direct links.

5 Experimental Results

DS-DDF for dynamic node tracking and localisation is demonstrated
by a simulation experiment. Ten mobile robots, each moving accord-
ing to a random walk behaviour, communicate with each other and
make range observations. Only node 1 has GPS. For simplicity, we as-



sume the system is synchronous,6 operating in 0.1 second timesteps.
The implementation does not attempt to address data association,
data validation or large non-linearities. To mitigate problems with
the non-linear range measurement model, all nodes were initialised
with a reasonable position estimate.

The experimental parameters are as follows. The standard devia-
tions for measurements are: initial node positions, 5 metres; velocity
measurements (from odometry), 1 metre/sec; GPS measurements, 5
metres; range measurements, 2 metres. At each timestep, the prob-
ability of a node obtaining a measurement are: GPS, 10% (node 1
only); range measurement to another node, 5%; communication with
another node, 10%. Note, the probabilities for range measurements
and communication are for each node interaction; so each timestep,
node X has 10% probability of measuring node 1, and 10% probability
of measuring node 2, etc.

The above parameters are non-critical since the lagged DS-DDF
estimate is identical to an optimal centralised estimate. (There are
minor variations due to differences in linearisation points for range
measurements.) Only the communication behaviour is important as
it affects the propagation characteristics of data packets and so de-
termines the system lag.

Each node exhibits different lags in its estimate of itself and other
nodes. Fig. 3 shows the estimate that node 1 has of node 3 in terms
of its x-axis position. At each moment t, node 1 holds an optimal
estimate of node 3 referring to a past moment in time, t − tlag . The
time lag tlag is shown in Fig. 4. To obtain a current-time estimate,
node 1 applies a predictive model (e.g., a constant-velocity inertial
model) to the most recent optimal estimate. This forward-predicted
estimate is conservative and is generated by an auxiliary estimator,
playing no part in the lagged optimal estimator.

6 Discussion and Future Directions

This dynamic network tracking and localisation example shows a
rather primitive and inefficient form of DS-DDF. Its main advan-
tage is local fusion of high frequency motion information, avoiding
the bandwidth congestion of communicating this data in raw form.

6 It is straightforward to implement an asynchronous system in practice by pre-
dictive time-alignment, but tedious to simulate. There is no loss of generality
in terms of DS-DDF.
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Fig. 4. Time lag of the optimal estimate. At each moment t, the optimal
estimate refers to the node’s position from t− tlag seconds in the past.

It also enables consistent fusion of range data, which is dependent
on node pairs. However there is increased communications lag, as
each node must wait for range timestamps from neighbouring nodes
before performing marginalisation and transmission of “own-states”.
There also remains significant bandwidth and computational costs,
since each range measurement, and its associated pair of own-state
estimates, is transmitted to every node in the network, and each node
duplicates the joint fusion operation.



This rather excessive redundancy may be greatly reduced by as-
suming a client-server structure. A small subset of nodes are ap-
pointed servers and the rest are clients. All nodes send their range
measurements to the nearest server, and this server sends back the
relevant range timestamps so that a node may perform own-state
marginalisation and send own-state packets to the server. Servers for-
ward their information to all other servers, and so perform DS-DDF
in the fashion described above. Clients can request marginal estimates
from any server when desired, but do not participate in joint fusion.
Thus, the redundancy is reduced to the number of servers rather than
the total number of nodes.

We expect that still more efficient strategies are possible. The
separability properties of the canonical-form estimate would permit
portions of the joint state to be fused on one node and transmitted
in parts to other nodes. The amount of redundancy would then be
fully configurable. A more general strategy for manipulating the joint
state is the subject of current research.

DS-DDF is not limited to dynamic node tracking and appears to
be a general paradigm for decentralised estimation. Further applica-
tions include (i) static nodes tracking moving targets,7 (ii) moving
nodes tracking static targets (such as DDF-SLAM [10]), and (iii)
combinations of moving and static nodes and targets.

7 Conclusion

This paper introduces delayed states to decentralised data fusion. De-
layed states capture statistical dependence with past estimates and
between multiple nodes. The ability to retain historical correlations
and the separability properties of the canonical-form Gaussian rep-
resentation open up exciting new possibilities for Bayesian DDF.
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