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Abstract

Topological maps provide a compact and flexible
method for mobile robot navigation without the
requirement of high precision localisation or pre-planned
trajectories. They represent an environment as a graph
where each node of the graph is a distinctive place and
each edge describes the path between two distinctive
places. A distinctive place is a location in the
environment which is distinguishable from other places
on the basis of patterns observable in sensory data.

The main difficulty with topological maps is that
reliable distinctive place recognition has been hard to
attain except in very simple, structured environments.
Even in these environments, failure to recognise a place
and false place recognition have been major problems.

This paper discusses a method for recognising
distinctive places, defined here as a set of features
observed from a particular vehicle pose (position and
orientation). Distinctive place recognition is achieved by
extracting features from sensory data and matching their
relative geometry to the relative geometry of the features
stored in the topological map. If the observed features
match those of a distinctive place, then the pose of the
robot relative to the distinctive place pose is determined.

Experimental results obtained with a 2D scanning laser
on a mobile robot platform demonstrate that this method
is robust to dynamic objects, occlusions and varied
viewpoints.

1 Introduction

In mobile robot navigation, there exist two main
techniques for enabling robot localisation within an
environment. The first is to maintain a very accurate
global estimate of the robot's pose. This has been
implemented using various methods such as evidence-
grids [11]; feature tracking [4]; and Iterative Closest
Points [8]. The problem with all of these methods is that
they are quite fragile to errors in the location estimate
and tend to fail catastrophically if the estimated location
drifts too far from the true location. This is usually due to
a failure to perform correct data association (i.e., to
associate newly observed features with previously
observed features).

The second technique is to localise via a topological
map. Topological maps are a graph-based description of

an environment comprising of nodes and connecting
edges or paths. Each node of the map is a distinctive
place [7] in the environment and the connecting paths
between nodes are sets of behaviours that will enable the
vehicle to travel from one distinctive place to the next.
These maps have the advantages of compactly
representing the environment in an intuitive format and
being quite robust to inaccuracies in the robot's pose
estimate. Topological maps tend to fail, however, if they
are unable to recognise nearby distinctive places [13] or
if they match a node to the wrong place. This may be
because of dynamic objects in the environment or
perhaps simply that the robot is observing the place from
a different viewpoint.

Most recent research has restricted distinctive place
definition to a set of models of very simple indoor
places. Kuipers and Byun [7] define a distinctive place
type by a set of elementary rules such as "equal distance
to near objects". The robot moves into the vicinity of the
place and then moves via a hill-climbing algorithm to the
point where the highest distinctiveness measure is
attained from its sonar sensors. This method was tested
only in a static, simulated environment. Aycard et al. [1]
use second order Hidden Markov Models to learn
distinctive place types such as open doors, corridors and
T-intersections. The robot must move past a place to
recognise it from the data sequence of its sonar sensors.
Sequence matching, however, was susceptible to
dynamic obstacles and changes in the robot's viewpoint.
Kortenkamp and Weymouth [6] also rely on simple
models of place types. They specify that a place must be
a gateway between two areas (e.g., a door or T-
intersection). Their sonar-based place recognition is
augmented by a vision sensor, which matches visual cues
with an image taken previously at the place location.
Owen and Nehmzow [9] avoid using distinctive place
models and, instead, define a place by a vector map of
the landmarks seen by their sonar sensors. They had
problems, however, when seeing a place from different
viewpoints and try to overcome this by using a compass
to ensure the sensors are always facing compass north.

The method described in this paper attempts to enable
reliable place recognition in an arbitrarily unstructured or
dynamic environment using features extracted from a 2D
laser scan. It is designed to recognise a distinctive place
in the presence of substantial noise, occlusion or
viewpoint variation provided at least a few of the original



node features remain observable. If a node match is
made then the relative pose of the vehicle to the node is
obtained.

The inspiration for this method comes from attempts to
solve the lost-in-space problem for star-trackers [10].
Bright stars are used as point features and are grouped
into sets of three (triads). The attitude of a star-tracker in
space can then be estimated by matching triads extracted
from an image of the sky with triads in a map.

For the mobile robot, features are extracted from each
laser scan. Nodes in the topological map are described by
triads of extracted features (see Figure 1) and any
subsequent scan can be matched to the node. Because
matching is based only on relative geometry between
triads of features, it is robust to both false features and
occlusions. Currently, an exhaustive triad matching
technique is used which is rather inefficient and can only
cope with about 30 features in real time.
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Figure 1: A triad of point features.

Graph theoretic methods may provide a more efficient
means to match laser scans than the triad matching
method. Converting the matching problem into a
Maximal Common Subgraph (MCS) problem [2] is
proposed but, at the time of writing, is untested.

This paper is organised as follows. Section 2 describes
the vehicles and sensors used to collect experimental
data. Section 3 describes the features extraction methods
used to generate static features from each laser scan. The
next section presents the triad-matching algorithm, which
is the core of this paper, and section 5 proposes an
outline for using graph isomorphism as an alternative
matching scheme. Section 6 shows the results of the
experimental data and section 7 gives some plans for
future research to improve this method of distinctive
place recognition. The final section makes concluding
remarks on the reliability of matching and place
recognition as demonstrated by the experimental data.

2 Test Vehicles and Sensors

The data used in this paper was logged from an indoor
scanning laser mounted on a three-wheeled mobile robot
- SydNav. SydNav, shown in Figure 2, is driven and
steered from the front wheel only. The two rear wheels
are fixed facing forwards and can rotate freely. The front
wheel has very accurate encoder data for steering (96000
counts per revolution) and drive (106 667 counts per
revolution). There are, however, quite substantial biases
in the dead reckoning estimate due to fairly coarse

approximations of the centre location of the three wheels,
the front wheel radius and the vehicle wheelbase.

motors and
encoders

Figure 2: The SydNav mobile robot.

The scanning laser produces a 2D scan over 180° with
a resolution of 0.5°. It has a maximum range of about
30m. A complete scan from the laser can be obtained at a
rate of 2Hz down a serial link at 19200 baud.

Some additional data was logged in an outdoor
environment using an outdoor scanning laser mounted on
a quayside cargo-handling vehicle called a straddle-
carrier. The reduced resolution and longer range of this
sensor made feature extraction rather more difficult than
for the indoor laser and so testing with this data remains
incomplete at this time.

3 Feature Extraction

Feature extraction is performed on each individual laser
scan. The assumption here is that within a single scan the
relative geometry between features is fixed (i.e., the scan
is an instantaneous snapshot of the environment). This is
reasonable as the scan sweep takes about 40ms and the
indoor robot moves at less than 0.5m/s.

Presently, the feature extraction algorithms are very
basic but they appear to be sufficient to produce
reasonably stable features from indoor laser data. The
first step in feature extraction is to cluster the range data.
This is performed sequentially from the first range
measurement. Each range measurement, R;, is compared
with the next adjacent range measurement, R;.;, as
shown below:

ARy = C1 + C2 * min{Ry, Riy}
if AR < ARjpa — add to cluster
else — start new cluster

The constants C1 and C2 are tunable to the laser's noise
and resolution characteristics. They were set to 0.07m
and 0.04m/m respectively for the experimentation in this
paper.

After clustering, there are three types of features that
are extracted: foreground edges, foreground points and
lines. Foreground edges and points are obtained by
checking the end points on the two edges of each cluster.
These are compared with the edge points of the two
adjacent clusters. If the cluster is reasonably large and
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either edge point has a shorter range than the edge on the
adjacent cluster, then that point is classified as an edge.
If, however, the cluster is fairly small and both edge
points have shorter ranges than the appropriate edges of
the adjacent clusters, then that cluster is a point (see
Figure 3).

Lines were extracted using a typical least-squares
based line-fitting algorithm such as in [5]. Line features
are not currently being used in the matching process.
This serves to make matching less reliable as there are
many stable line features within the indoor environment
and they are generally more reliable than point features.
It is hoped to incorporate line features into the matching
algorithm in the future.
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Figure 3: Edge and point extraction from a laser scan.
4 Triad Matching Method

The triad matching method described in this paper is
based on an idea used to determine the attitude of a star-
tracker from an image of the starscape. Quine [10]
approaches this problem by extracting brightest stars
from a star map. For each of these stars, the two closest
neighbouring stars of reasonable brightness are used to
form a triad. In this way, a list of star triads (and their
relative geometry) is created. Any subsequent image of
the sky will have valid triads that can be matched against
the map triad list and, hence, provide the attitude of the
star-tracker in space.

The star-tracker method cannot be used directly as a
distinctive place recognition algorithm for several
reasons. It assumes perception of many (~2000) accurate
static point features with very few occlusions or false
features (e.g., planets, satellites). With these
assumptions, it only generates a single triad for each
brightest-star feature. There is no cross-triangulation.

Features extracted from the 2D-laser scan are subject to
substantial noise, occlusion and false-features. Also, the
number of features extracted is typically quite low (~20).
If the features were formed into isolated triads then the
probability of subsequent matches would be small as, for
each false feature, two possibly good features would be
lost. To ensure optimal matching, the maximum number
of feature triad combinations must be formed. That is,

there would be a list of C3N triad combinations formed

from N features.

The method presently used to match two scans
involves an exhaustive search to match each triad from
one scan to each triad from the other. This is a very
inefficient algorithm but it guarantees to find a match if
at least three matching features exist. It was found to be
able to perform real-time matching with around 30
features using a C program on a fast Pentium II PC. The
algorithm is as follows:

First generate the topological map nodes from data logged in
the environment in question. These nodes are described by a
triad list generated from the scan taken from the node pose.
Scans from subsequent runs through the environment are
matched to the map scans to obtain the relative pose of the
vehicle with respect to the node pose.

Triad list generation:

1. Generate a list of distances, Dij, from each feature, i, to every
other feature, j, in the scan.

2.Create a list of triads consisting of all the combinations of
three features i, j, k and their associated distances Dij, Dik,
Djk.

3.For each triad, sort the feature indices i, j, k so that Dij, Dik,
Djk are in ascending order.

4. Calculate the angle <jik (opposite angle to longest side Djk).

5. Sort the triad list according to the minimum distance Dij.

Triad matching:

1. Create a triad list for the new scan.

2.Create an m by n matrix of zeros, M, where m is the number
features in the new scan and n is the number of features in the
map scan.

3. Check sequentially through the triad list of the new scan. For
each triad, select the subset of map scan triads that have a
valid minimum distance match.

4. Select those triads from the map scan subset whose angle and
remaining two distances match. (The angle indicates that
triads with matching sides are not mirror image matches.)

5. For each triad match there is a mapping: new scan {i, j, k} to
map scan {m, n, o}. Increment the matrix M at indices (i, m),
(j, n) and (k, o).

Relative pose calculation:

1.From the matrix M, obtain the three strongest mappings
(highest count of matches).

2.Calculate the relative change in pose required to map the
three new scan features onto the three map scan features.

3.Transform the new scan features so that the three points lie
on their appropriate map scan points.

4. Perform a Nearest-Neighbour search for all the new scan
features in relation to the map scan features. A feature match
exists if a new scan feature has a map scan nearest-neighbour
closer than Dy,

5.If the change in pose found in step 2 reasonably matches the
predicted pose of the vehicle relative to the map pose, and the
number of nearest-neighbour matches is greater than N
(where N>=3) then we have a place recognition.

5 Maximal Common Subgraph

A promising but, as yet, untested alternative to the brute-
force triad matching approach is a graph theoretic
method to find the Maximal Common Subgraph (MCS)
[2]. The idea is that each feature from a scan forms a



graph node and the distances or angles between features
are the graph edges:

Nodes: Points and lines.

Edges: Point-point — distance
Point-line  — perpendicular distance
Line-line  — acute angle

A fully connected graph is generated for both the map
scan and the new scan and, by solving the MCS between
these two graphs, the maximum subgraph that is
isomorphic to both graphs is obtained. It is hoped that
this subgraph will directly indicate the mapping of
features that are geometrically consistent between the
two scans.

6 Results

Experimental data was logged by SydNav in an indoor
corridor environment (see Figure 4). An accurate global
pose of the vehicle was calculated off-line using a
localisation and map building algorithm described in [3].
This accurate pose information is for display purposes
only and was not used in the matching or node
recognition process.

Figure 4: Laser generated map of environment
and the path traveled by the robot.

Six distinctive places were chosen at arbitrary locations
from the logged data as shown by the triangles indicating
robot pose in Figure 5. These places are described by the
single scan taken at that pose. Matching was then
performed sequentially for each scan from the
experimental run against each of the map scans.
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Figure 5: Six distinctive places — the point of the
triangle represents the front-centre of the vehicle.

A photo of the environment as seen from the upper-
right-hand node is shown in Figure 6. The pose of the
vehicle at this distinctive place and its defining laser scan
are shown in Figure 7 (note the railing poles, the two
doorways and the support column in both pictures). The
positions from which the upper-right-hand node was
visible and correctly identified are indicated by the dark
dots and the positions from which it was falsely
identified are indicated by the light dots. At most of the
locations where false matches were made, the distinctive
place was not even visible. Usually these false matches
were based on matches between three or four features
only, with the even spacing of the railing poles as the
main offenders.

Figure 6: Corridor environment in the region of
the upper-right-hand distinctive place.
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Figure 7: Definition of upper-right-hand node and
positions from which matches to this place were made.

Figure 8 shows an example of a correct match to the
upper-right-hand distinctive place based on five
matching features. The node pose and the new pose of
the vehicle are shown in their true global positions, as are
their respective scan features. The agreement between
the relative pose generated by the matching process and
the true relative pose can be seen by the way the scan
features lie in close vicinity to their appropriate mapped

distinctive
place

true matches made
sitions
marked with dark dot



feature. The match in Figure 9, however, is a false match
based on six matching features. The features in the new
scan were mapped to the node features 1.8m to the left
and this resulted in a 1.8m discrepancy between the
relative pose generated by the matching process and the
true relative pose.

vehicle pose

circles are features for new scan

extracted from the

stars are features
extracted from
the map scan new scan

Figure 8: Correct match to the distinctive place.
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Figure 9: False match to the distinctive place.

The magnitude of the discrepancy between the map
matched relative pose and the predicted relative pose is
the basis for determining whether to accept a match as
true or to reject it. In the experiment described in this
paper, the predicted relative pose was based on raw
encoder-based odometry. True matches were found by
gating the distance discrepancy at 0.4m and the rotational
discrepancy at 0.1 radians. These values allow correct
matches even in the presence of significant accumulated
error in the encoder data (although, in practice, the error
accumulation between nodes would be small if distances
between nodes were small).

From the entire run there were 2884 matches made to
the six distinctive places. The consistency of the
matching procedure can be seen by the large
concentration of distance errors within the 0.4m gate
(particularly at 0.05m) in Figure 10 compared to the
reasonably flat distribution outside the 0.4m gate in
Figure 11.
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Figure 10: Frequency of distance discrepancies
less than the distance discrepancy gate.
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Figure 11: Frequency of distance discrepancies
greater than the distance discrepancy gate.

False matching decreases rapidly with the number of

features matched in a scan (see Figure 12). No false
matches were found if more than six features were
matched between the two scans. It is hoped that
mismatching will be reduced even further with the
addition of line information.
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Figure 12: Percentage of false matches versus
the number of features matched.

The use of encoders as the comparison for the map
matched relative pose is only one method for gating out
false matches. An alternative method would be to define
many distinctive places in fairly close proximity such
that multiple nodes could be identified in a single scan.
In this way matches could be used to validate each other
— requiring no encoder data at all.



7 Future Work

The following avenues are to be examined in relation to
this work. Feature extraction must be improved to obtain
stable features from the outdoor laser data (and better
stability for the indoor laser data). A stochastic feature
covariance measure would also be of value.

The graph matching process requires a substantial
speed-up to make it computationally tractable with larger
numbers of features. It is hoped that the MCS method
will be the answer here. The MCS method would also
allow straightforward integration of line features into the
matching process.

The stability of features over several scans can be
checked by performing matching between sequential
scans. This can be used to give a weighting measure for
the number of times a feature has been sighted and
successfully matched.

Finally, it is hoped to develop robust automatic
distinctive place generation and dynamic maintenance of
these node scans. Distinctive places should be defined at
intervals when scan data of high confidence is available.
The confidence measure would be a combination of the
number of features in the scan, the weighting measure
for each feature (based on sequential scanning) and the
confidence associated with the geometric configuration
of the features (similar to the position estimation
precision available for different satellite configurations
with GPS [12]). Dynamic node maintenance would
involve tentative additions and subtractions to the node
features whenever the place is revisited. These additions
and subtractions would cater for the existence of
temporary static objects in the environment.

8 Conclusion

Although the experimental data was obtained in a static
environment, its usage in the place recognition algorithm
was non-ideal. As the aim of this paper was to
demonstrate the robustness of the matching process, no
effort was made to improve the following:

e By using just point features, a large portion of the
available information (i.e., line features) was unused
in the matching process.

e The distinctive place nodes were chosen arbitrarily
rather than at locations where there was a lot of
stable feature information.

e The nodes were defined by a single isolated scan
without any checking made for the stability of the
features extracted from it.

The results from place recognition showed that most
matches were either well within the distance and rotation
validation gates or had large (easily detectable)
discrepancies. The majority of the false matches were
matches based on just three features. Dramatic
improvement was obtained by only accepting matches
involving five or more features.

The distinctive place recognition method described in
this paper appears to be reliable and its robustness can
only improve with additional line information and
intelligent map generation.
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