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Abstract - This paper develops a general theory of
validation gating for non-linear non-Gaussian mod-
els. Validation gates are used in target tracking
to cull very unlikely measurement-to-track associa-
tions, before remaining association ambiguities are
handled by a more comprehensive (and expensive)
data association scheme. The essential property of
a gate is to accept a high percentage of correct associ-
ations, thus maximising track accuracy, but provide
a sufficiently tight bound to minimise the number of
ambiguous associations.

For linear Gaussian systems, the ellipsoidal vali-

dation gate is standard, and possesses the statistical

property whereby a given threshold will accept a cer-

tain percentage of true associations. This property

does not hold for non-linear non-Gaussian models.

As a system departs from linear-Gaussian, the ellip-

soid gate tends to reject a higher than expected pro-

portion of correct associations and permit an excess

of false ones. In this paper, the concept of the ellip-

soidal gate is extended to permit correct statistics for

the non-linear non-Gaussian case. The new gate is

demonstrated by a bearing-only tracking example.

Keywords: Target tracking, data association, validation

gating, Gaussian mixture models.

1 Introduction

Target tracking is the problem of estimating the loca-
tion and velocity of one or more moving targets given
a motion model and a set of sensor measurements [1].
Sensed data is imperfect and, moreover, a single mea-
surement might detect only an aspect of a target po-
sition (e.g., range-only or bearing-only), so multiple
measurements are combined using a stochastic filter.
Sensor fusion involving non-distinct targets introduces
the problem of data association.

A measurement might originate from one of several
targets or from clutter within the environment, and
robust data association must deal with this ambiguity.
A number of schemes exist in the literature including
joint probabilistic data association (JPDA) [3], multi-
hypothesis tracking (MHT) [10], and mixture model
tracking (MMT) [7]. Each of these systems can be
computationally prohibitive if all possible associations
are considered, particularly when accounting for non-
detection of existing tracks, false alarms, track loss,
and new track detection. Furthermore, probabilities

of false positives (clutter) and false negatives (non-
detection) are problem specific and may be difficult to
model realistically. To reduce complexity for practical
implementation validation gating is applied [1].

A validation gate is an association threshold,
whereby an observation-to-target association is consid-
ered if it satisfies a metric of “acceptability”, and is re-
jected otherwise. Typically this gate is based solely
on distance, although other attributes (e.g., colour,
radar signature) might also act as discriminants. A
data association scheme, such as MHT, becomes more
tractable having first culled very unlikely associations.

The standard validation gate is a Gaussian hyper-
ellipsoid, and is an optimal metric for linear-Gaussian
systems. It remains ubiquitous in the current target
tracking literature [12, 8, 5, 11]. However, it ceases to
be statistically precise for systems with non-Gaussian
probability densities or non-linear observation models.
As a system departs from linear-Gaussian, the ellipsoid
gate tends to reject a higher than expected proportion
of correct associations and permit an excess of false
ones.

This paper investigates validation gating for non-
linear non-Gaussian systems. It develops a general
theory for validation gating as an extension to the lin-
ear concept of the ellipsoidal gate. For linear-Gaussian
models, the new gate is identical to the ellipsoidal gate.
For non-linear non-Gaussian models, it maintains a
proper statistical “probability of acceptance” and con-
tinues to exhibit sensible gating behaviour. While this
paper provides implementation of our theory, the fo-
cus is not on computational aspects but on theoretical
concepts and intuitions of the key gating properties.

The paper format is as follows. Section 2 defines
the properties and calculation of the standard ellip-
soidal gate. Section 3 presents a generic Monte Carlo
solution for computing a validation threshold. Sec-
tion 4 introduces the bearing-only scenario used as an
example in subsequent sections. Section 5 presents a
measure of validation likelihood based on the marginal
observation density p (z), and examines why it is not
sensible. The next section discusses why p (z) does,
however, provide a proper measure of track likelihood.
Section 7 presents a second measure of validation like-
lihood based on the joint target-measurement density
p (x, z), and proposes that this is reasonable and gen-
eral. The final section provides concluding remarks
and suggestions for future research.



2 Ellipsoidal Validation Gate

The ellipsoidal validation gate is optimal for a linear
observation model1 with additive noise

z = Hx + r (1)

where the state probability density function (PDF) is
Gaussian p (x) = N (x; x̂,P), and the noise is zero-
mean Gaussian p (r) = N (r;0,R) and independent of
x. The validity of a measurement zi is determined from
its residual (or innovation) with the predicted observa-
tion

ν = zi −Hx̂ (2)

which has covariance S = HPHT + R. Validation is
computed by gating the normalised innovation squared
(NIS).2

νT S−1ν < Md (3)

The threshold Md, for an innovation dimension d, can
be computed efficiently since the NIS follows a chi-
square PDF. Thus, for a “probability that n% of true
associations are accepted”,3 Md is obtained from

n

100
= P (

d

2
,
Md

2
) (4)

where

P (a, b) =
1

Γ(a)

∫ b

0

e−tta−1dt (5)

is the incomplete gamma function [9].
It is important to realise that a validation gate pro-

vides no statistical measure for the rejection of false
associations. Rather, it defines a region of acceptance
such that (100−n)% of true measurements are rejected
given that each zi is distributed according to

p (z) = N (z;Hx̂,S) (6)

This allows the gate to operate without recourse to
models of clutter etc, which may be difficult to de-
fine realistically. Effectively, it eliminates very unlikely
associations, the bulk of which are presumably other
targets and clutter, and the remaining measurements,
whether true or false, are plausible candidates.

1It is typical for state-space variables to have time-subscripts,
such as xk, but, as validation gating is not time dependent, they
are omitted here.

2The NIS is also commonly known as the Mahalanobis dis-
tance.

3This statement is a little misleading; the ellipsoidal gate as
calculated from (4) does not accept a specified n% of true mea-
surements in a real (physical) case. If the true target location xt

is somewhere towards the centre of p (x), then more than n% of
measurements, which are distributed according to p (z|x = xt),
will be accepted. If, on the other hand, xt is far from the mean
of p (x), less than n% will be accepted. What the ellipsoidal gate
does achieve is the acceptance of n% of true measurements over
a series of Monte Carlo simulations, where xt is sampled from
p (x) for each run. This statistical quality is the same for the
non-linear validation gates developed in this paper.

3 Computing a Validation Gate
for Non-Gaussian PDFs

A closed-form validation threshold is not, in general,
available for non-Gaussian PDFs. However, an approx-
imation is possible via Monte Carlo sampling.

1. Draw N samples zi ∼ p (z).

2. Weight each zi according to its likelihood of “as-
sociation validity”.

3. Select the m-th largest weight, where m =
Nn/100, to obtain an n% acceptance threshold,
wn. Thus, if n is large (say 95%), then wn is
small, (the bottom 5%).

If the validation likelihood of a particular measurement
is greater than wn, then the association is accepted.
For p (z) Gaussian, this approach becomes equivalent
to the ellipsoidal gate as N →∞.

From the above algorithm, steps 1 and 3 are
straightforward. Samples drawn from p (z) provide a
statistic of how many measurements will fall within a
certain region of observation-space, and selecting an
ordered weight marks a bound for inside or outside
that region. Step 2, on the other hand is less intuitive,
and the remainder of this paper focuses on defining an
appropriate measure for validation likelihood.

Two measures are investigated. The first is the
observation PDF p (z), such that wi = p (z = zi).
This measure, while seemingly the obvious solution,
is shown to be an unreasonable validation likelihood.
The second is based on the joint PDF of the state and
observation p (x, z). Given an observation zi, the val-
idation likelihood is wi = max p (x, z = zi); the mode
of a slice along zi. This measure gives sensible gating
results. Both measures are equivalent to the standard
ellipsoidal gate for linear-Gaussian systems.

4 Bearing-Only Tracking

As an example of a non-linear non-Gaussian problem,
we consider a bearing-only target tracking scenario.
The bearing observation model is given by

z = h (x,xs) + r = arctan
(

y − ys

x− xs

)
+ r (7)

where r is zero-mean Gaussian with variance R =
(π/360)2, and the sensor location xs is assumed per-
fectly known. For a given target location xi, this
model defines the conditional PDF p (z|x = xi) =
N (z;h (xi,xs), R) and, for a given measurement zi, it
defines the likelihood function p (z = zi|x) over the do-
main of x.

A bearing-only likelihood function p (z = 0◦|x), in
the Cartesian plane, is shown in Figure 1. Note, this
function differs from the model in (7) in two respects.
First, it is a Gaussian mixture model (GMM) approxi-
mation, which permits relatively efficient computation.
And second, due to the limited number of mixture com-
ponents, it exhibits a roll-off in likelihood after about
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(a) Gaussian components (2σ ellipses) and 95% volume bound (b) GMM likelihood function

Figure 1: A 20-component Gaussian mixture model of a bearing-only likelihood function in the
coordinate frame of the target x, where xs = [0, 0]T and z = 0◦. The individual components are
shown in (a), along with an equi-likelihood contour encompassing 95% of the GMM probability mass.

300 metres, whereas (7) defines a constant likelihood
along the x-axis from the origin to infinity. Likelihood
functions for other bearing angles, taken from differ-
ent sensor locations, have the same essential shape as
in Figure 1, just shifted and rotated to the appropriate
position and angle.

Given an uninformative prior, say p (x) =
N (x;0,∞), Bayesian fusion with p (z = zi|x) produces
a posterior p (x|zi) with the same shape as the like-
lihood function, but normalised to unit volume. In
the remainder of this paper, we use p (x|z = 0◦) as the
prior PDF in our examples; that is, the fusion of the
likelihood function in Figure 1 with an uninformative
prior over the domain of x. For notational convenience,
we denote this (informative) prior as simply p (x). It
is the PDF of the target location based on a single
bearing-only measurement.

The bearing-only scenario is interesting because the
observation model is very non-linear. In particular,
p (x) has a region of high probability density but little
local probability mass near the origin; the bulk of the
mass is distant from the origin. This is different to
a Gaussian PDF, where the region of most mass is
also the region of high likelihood. The existence of
high likelihood away from the concentration of mass
is fundamental to the derivation of a suitable gating
measure.

5 p(z) as a Validation Likelihood

The generic gating algorithm in Section 3 draws sam-
ples from p (z), and so the most intuitive measure
of validation likelihood is p (z) itself. Certainly for
the Gaussian case in (6), an n% acceptance threshold
based on p (z) is equivalent to the standard chi-square
gate, and can be computed directly as

wn =
1√

(2π)d |S|exp
(
−1

2
Md

)
(8)

Thus, a particular zi is accepted if p (z = zi) > wn.
In general, p (z) can be obtained from the observa-

tion model and the prior as

p (z) =
∫

p (z|x) p (x) dx (9)

which is a marginalisation over x of the joint PDF
p (z,x). If the observation model is linear, as in (1),
and the PDFs are represented by GMMs,

p (x) =
N∑

i=1

αiN (x; x̂i,Pi) (10)

p (r) =
M∑

j=1

βjN (r; r̂j ,Rj) (11)

then there is a closed-form solution.

p (z) =
N∑

i

M∑

j

αiβjN (z;Hx̂i + r̂j ,HPiHT + Rj)

(12)
However, for a non-linear observation model an ap-
proximation is required. In our experiments, we chose
a simple, though expensive, Monte Carlo sampling ap-
proach.

1. Draw N samples xi ∼ p (x).

2. The conditional PDF is p (z|xi) = h (xi) + p (r).

3. Sum the conditionals to marginalise over x,
p (z) ≈ 1

N

∑N
i (h (xi) + p (r)).

For the model in (7), with p (r) Gaussian, we get

p (z) ≈ 1
N

N∑

i

N (z;h (xi,xs), R) (13)

Figure 2 shows an example validation gate obtained
for the prior p (x) from Section 4 when the sensor lo-
cation is moved to xs = [10, 10]T . The resulting p (z)
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Figure 2: Validation gate for a bearing-only scenario, where p (x) is depicted in (b) by a shaded
green region (marking 95% of its mass), and the sensor location xs = [10, 10]T by a ∗. The threshold
weight w95 is shown by a horizontal line in (a), and the resulting region of valid bearing observations
radiating from xs are shown in (b) by the shaded blue region.

is shown in Figure 2(a). Sampling from p (z), 95% of
samples lie between -10◦ and -0.36◦, and the thresh-
old weight w95 is 0.5. Thus, observed angles must be
-10◦ < zi < -0.36◦ to be accepted; this is depicted in
Figure 2(b).4

Clearly, rejecting angles less than -10◦, means re-
jecting observations that, intuitively, are quite feasi-
ble; effectively it rejects the possibility of a target close
to the origin. For example, from p (x), the probabil-
ity density of the true target location being at, say,
[50, 0]T is equal to it being at [250, 0]T . This agrees
with our intuition where, based on a single bearing-
only measurement, we would not be surprised if the
target turned out to be near the origin. However, if
the true target was at xt = [50, 0]T , so that obser-
vations actually received are distributed according to
p (z|x = xt), 95% of observations would fall between
-15◦ and -13◦, and all of them would be rejected by
this validation gate.

The problem with p (z = zi) is that its meaning—
“the likelihood of obtaining zi when xt could be any-
where in p (x)”—does not correspond to our essential
requirement for a validation gate. From p (z) we pre-
dict an observation is most likely to come from the
direction where concentration of mass in p (x) is great-
est; this is apparent from Figure 2(a). However, the
likelihood of an observation is not the same as the fea-
sibility of an observation. From the density of p (x) it
is clear that a target location at [50, 0]T is as feasible
as at [250, 0]T .

Thus, we make the following distinction. Before any
measurement has been received, the density of p (z)
predicts which observations are most likely, while, hav-
ing received a particular observation zi, the density of
p (x) indicates whether it might originate from a fea-
sible target. We contend that a validation gate is con-
cerned with the feasibility of an existing measurement,
not the likelihood of a measurement yet to arrive.

4For clarity, the coordinate axes in Figure 2(b), and subse-
quent figures, are not equal. However, this has the unfortunate
effect of exaggerating angles, which distorts the true shape of the
validation region, making it appear much larger than it really is.

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8

10

metres

m
et

re
s

Figure 3: A multiple hypothesis example, where p (x)
and xs are as in Figure 2. The sensor returns two mea-
surements, shown as lines, at −10◦ and −2◦. The two
possible updates for the target are depicted by contours
bounding the 95% mass concentration of the respective
posterior PDFs.

6 p(z) as a Measure of Track
Likelihood

While not sensible as a measure of validation, p (z) is
a reasonable measure of track likelihood when there
exist multiple track hypotheses. Consider the example
in Figure 3. The prior p (x) and sensor location xs are
the same as in Figure 2, and it is known that there
exists a single target only. However, the sensor returns
two measurements, z1 = −10◦ and z2 = −2◦, one of
the target and the other of clutter. If the clutter is
assumed to be uniformly distributed, then there are
two possible hypotheses:

H1 : z1 = h (x,xs) + r

z2 = c, p (c) =
1
2π

, −π < c ≤ π (14)

H2 : z1 = c, p (c) =
1
2π

, −π < c ≤ π

z2 = h (x,xs) + r (15)

These hypotheses may be ranked, as to one being
more likely than the other, by a general mechanism
known as Bayesian model comparison [6, Chapter 28].
Whenever performing an update using Bayes theorem,



the models of the system are always an implicit condi-
tioning parameter H.

p (x|z,H) =
p (z|x,H) p (x|H)

p (z|H)
(16)

Typically, the posterior is computed as proportional
to the numerator of the right-hand-side, and p (z|H) is
ignored as a normalising constant. When there exist
multiple alternative hypotheses {H1, . . . ,HN}, how-
ever, the value of p (z = zi|Hm) is the “evidence for
Hm”; it quantifies the relative merit of a hypothesis
for predicting the observation zi, and allows different
models to be ranked.

In our example, where z = [z1, z2]T is the pair of
observations, p (z|H) = p (z1|H) p (z2|H) as z1 and z2

are independent. Given the measurement z1 = −10◦

and the hypothesis H1, the scalar value of p (z1|H1) is
computed as

p (z1|H1) =
∫

p (z1|x,H1) p (x) dx (17)

For a GMM implementation, the prior and likelihood
function are each weighted sums of Gaussians over the
domain of x.

p (x) =
N∑

i

αiN (x; p̂i,Pi) (18)

p (z1|x,H1) =
M∑

j

βjN (x; q̂j ,Qj) (19)

Therefore, the value of (17) is found by multiplying
(18) and (19) and summing the weights of the resultant
GMM. This integral can be computed directly as

p (z1|H1) =
N∑

i

M∑

j

αiβj
1

2π
√
|S| exp

(
−1

2
νT S−1ν

)

(20)
where

ν = p̂i − q̂j

S = Pi + Qj

Computing p (z2|H2) is similar. The value of p (z2|H1)
and p (z1|H2) is simply 1/2π. This gives the ranking
weights as p (z|H1) = 0.06 and p (z|H2) = 2.8. Thus,
the hypothesis that z2 observes the target is by far the
more likely model.

This result makes sense as p (z) predicts that targets
more distant from the origin are more likely, therefore
the hypothesis supporting the more distant target has
higher probability.

7 p(x,z) as a Validation Likeli-
hood

Another possible measure of validation likelihood is
the joint PDF p (x, z) = p (z|x) p (x). Given an
observation zi, the product of the likelihood func-
tion p (z = zi|x) and the prior p (x) produces a slice

through the joint PDF p (x, z = zi) along the hyper-
plane z = zi.5 The value of p (x, z = zi) at each point
xj is the probability that both zi is valid and the true
target location is xj . The mode

xmode = arg max p (x, z = zi) (21)

gives the most likely target location possible for zi.
We propose that the mode-weight of p (x, z = zi) is the
correct measure for likelihood of “association validity”
for zi.

Restating the algorithm from Section 3, the full val-
idation gate computation is performed as follows.

1. Draw N samples zi ∼ p (z). Note, it is not nec-
essary to compute p (z) in order to draw samples
from it. Samples may be generated as xi ∼ p (x)
then zi ∼ p (z|xi).

2. Weight each zi according to its validation likeli-
hood.

(a) Generate the likelihood function p (z = zi|x).

(b) Compute a slice of the joint PDF along zi,
p (x, z = zi) = p (z = zi|x) p (x).

(c) Compute the mode wi = max p (x, z = zi).

3. Select the m-th largest weight, where m =
Nn/100, to obtain an n% acceptance threshold,
wn.

Step 2(b) is the product of the likelihood function and
the prior; this operation has a closed-form for both
Gaussians and GMMs. Step 2(c) is closed-form for
Gaussians, since the mean of p (x, z = zi) is also its
mode, but there is no analytical solution for GMMs.
To find the mode of a general GMM requires a global
optimisation algorithm. We implemented the search
using a combination of Monte Carlo sampling and local
optimisation, but more efficient solutions exist (e.g.,
[2]).

When p (x, z = zi) is Gaussian, its mode is propor-
tional to its volume, i.e., max p (x, z = zi) ∝ p (z = zi)
for all zi. Therefore, for linear-Gaussian models, the
p (x, z) gate is equivalent to the p (z) gate and, in turn,
to the standard ellipsoidal gate.

Returning to the bearing-only example from Sec-
tion 5. The samples drawn from p (z) are the same
as before, but are weighted according to the mode
of p (x, z = zi), as shown in Figure 4(a). (Note, the
top of Figure 4(a) should be flat, but a ripple is in-
troduced by the GMM approximation.) Because the
samples are from p (z), the resultant weight threshold
w95 = 0.013 accepts 95% of true measurements, the
same as for the gate in Section 5. But this time, the
5% rejected are those that intersect with p (x) along re-
gions of low joint probability. In Figure 4(b) the valid
region −135◦ < zi ≤ −1◦ includes locations close to
the origin, as is expected intuitively.

A point on the joint PDF p (x = xj , z = zi) is the
probability of xj and zi both being true together.

5Be careful to avoid confusion here. A slice through the joint
p (x, z = zi) is not the same as the conditional p (x|z = zi).
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Figure 4: The values of p (x) and xs in (b) are the same as in Figure 2(b). In (a), the mode of
p (x, z = zi) is shown as a function of zi. The weighted samples from p (z) are red crosses, and the
threshold weight w95 is shown by a horizontal line. The valid observation region is shown in (b) by
the shaded blue region.

Given a measurement zi, the mode of p (x, z = zi) in-
dicates the most likely target location possible for zi.
If zi permits a likely target location, it is considered
to be feasible, and so p (x, z = zi) seems a reasonable
measure for a validation gate.

8 Conclusion

This paper extends the concept of the ellipsoidal vali-
dation gate to non-linear non-Gaussian systems. The
proposed gate is based on the joint target-observation
PDF p (x, z) and exhibits the same “probability of ac-
ceptance” characteristics as the ellipsoidal gate.

An alternative gate, based on the marginal observa-
tion PDF p (z), was found to be unsuitable. It tends
to reject observations which intuitively seem possible
and, indeed, would be probable if the true target loca-
tion happens to be in a region of high probability den-
sity but low mass concentration. The problem is that
p (z) is a predictive measure for the likelihood of future
observations, whereas validation requires a feasibility
measure for an observation actually received. Never-
theless, p (z) is a legitimate Bayesian measure of track
likelihood when tracking multiple target hypotheses.

The algorithms in this paper are computationally in-
tensive, and our focus has been on theoretical aspects
rather than actual implementation. We expect that
more efficient approximations will be found (e.g., ap-
plying the unscented transform [4] to non-linear GMM
transformations rather than Monte Carlo sampling).
The main contribution of this paper is to develop a
theory concerning the form of an ideal validation gate.
We propose that the mode of p (x, z = zi) is the correct
measure, giving the right acceptance statistics and per-
mitting feasible associations. As a fundamental mea-
sure, it provides a yardstick for comparing the veracity
of heuristic or approximate gates developed for practi-
cal application.

Acknowledgement

This work is supported by the ARC Centre of Excellence
programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government.

References

[1] Y. Bar-Shalom and T.E. Fortmann. Tracking and
Data Association. Academic Press, 1988.
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