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Abstract— This paper presents algorithms for consistent joint
localisation and tracking of multiple targets in wireless sensor
networks under the decentralised data fusion (DDF) paradigm
where particle representations of the state posteriors are com-
municated. This work differs from previous work [1], [2] as
more generalised methods have been developed to account for
correlated estimation errors that arise due to common past
information between two discrete particle sets. The particle sets
are converted to continuous distributions for communication and
inter-nodal fusion. Common past information is then removed
by a division operation of two estimates so that only new
information is updated at the node. In previous work, the
continuous distribution used was limited to a Gaussian kernel
function. This new method is compared to the optimal centralised
solution where each node sends all observation information to a
central fusion node when received. Results presented include a
real-time application of the DDF operation of division on data
logged from field trials.
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I. INTRODUCTION

In this paper, we consider a situation where a network of
sensors perform particle filtering for joint non-linear, non-
Gaussian localisation and tracking of multiple targets in the
environment. Applied in a decentralised data fusion (DDF)
system, the goal is to consistently combine the communicated
particle distribution with the local particle distribution of the
state posterior of the target under limited communication
bandwidth. DDF systems (where there is no central service
or facility and communications are made solely to their
immediate neighbours) offers the advantages of robustness,
scalability and modularity [3].

For a fully decentralised system [4], the estimates commu-
nicated, p (xi|Z) are comprised of observation information
Z = 1z,...z; of the state x; at time k obtained from
local and remote nodes in the network unlike previous work
which communicate observation likelihoods p (z|xr) [5],
[6]. The main advantage of communicating state posteriors
over raw observations or observation likelihoods is bandwidth
efficiency. Transmission of likelihoods may result in loss of
communicated information or buffering of likelihoods when
communication breaks down. However, as observations ob-
tained from the sensors are locally updated with the state
estimate at each node, all information contained in the lost
messages are implicitly present in future messages received
after the communication link is re-opened [4]. Furthermore,
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instead of communicating and propagating each likelihood
message throughout the network to every node, the local
observation likelihoods and received state posteriors are com-
bined with the local state posterior, only the combined result
is communicated at constant time, reducing communication
resource requirements [4].

Most practical applications of distributed and decentralised
estimation have been focused on representing features with
Gaussians [4], [7]-[10]. However, superior estimation accu-
racy can be obtained with non-Gaussian estimation when the
underlying distribution is not a normal distribution in shape
such as a skewed or multi-modal distribution [11], [12] or
when there is a need to discriminate and track objects in
cluttered environments [13], in which particle filters are an
ideal choice [1]. As a result of communicating state posteriors,
the estimates are not independent due to correlated or com-
mon past observations. Hence, problem faced in fusing non-
Gaussian DDF tracks is the removal of common information.
In tree structured networks, a division operation is required [3]
whereas conservative methods may be applied for networks
with loops (redundant communication channels).

The main contributions of this paper are consistent methods
based on importance sampling to perform the DDF operation
of division. This is demonstrated with particle representations
although it is applicable to other non-Gaussian form such
as mixture models. The main advantage of these methods
compared to that applied in a previous paper [1] is that
the transformation to a continuous distribution required for
communication and fusion is not restricted to a Gaussian
kernel. The accuracy and consistency of the operations based
on the Kullback-Leibler (KL) Divergence and entropy is
compared to the centralised solution, the closest approximation
to the ’true’ solution for non-Gaussian representations. The
secondary contribution of this paper is the implementation of
the DDF operations in real time on data collected from field
trails.

II. RELATED WORK

Particle representations have been used for estimation in
sensor networks. Information was either communicated to
a (central) fusion node [14], [15] or in a decentralised
fashion [5], [6], [16]. However, the type of information com-
municated in the network was limited to either observation



measurements [5], [16]-[18] or state estimates based only on
(local) observations made at its corresponding sensor node [6],
[15]. In our work, however, the state estimates are based on
both local observations and received information from other
nodes.

A method to perform fusion on fuse particle representations
of these state posteriors is to convert both sets to Gaus-
sian mixtures and applying covariance intersection algorithms
in [19] and [20] as demonstrated in our previous work [1],
[2]. Although these covariance intersection algorithms aims to
ensure conservative fusion of possibly correlated information,
they do not guarantee against optimistic estimates.

III. GENERALISED DECENTRALISED DATA FUSION

A decentralised data fusion system (Figure 1) is applied
to obtain joint consistent information of target states. Each
decentralised node has a sensor which makes observations over
which a likelihood is generated and sent to the local filter.
The major operations in the node, such as local filtering and
node-to-node fusion. The area of primary concern is the node-
to-node fusion in which channel filters ensures consistency.
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Fig. 1. A decentralised data fusion architecture with channel filters. Local
filters update observation likelihoods from local sensors and fuse information
received from channel filters. Channel filters maintain a record of common
information between two nodes. A separate channel filter is required for every
connection, hence there are two channel filters for the node in the middle.

A. Channel Filtering

The fusion between two estimates, where posteriors are
communicated is illustrated in [1] amounts to a multiplication
and a division operation to remove the common information

[21], which is given by:
P (xk|Z;) p (xk|Z;)

p(xlzJzs) o F » H1Zi N Zy)

For tree-connected networks, channel filters are used to main-
tain common information about a particular target that a node
has in common with another that it is connected to. For each
communication link, a different channel filter is required to
maintain the common past information between two nodes.
As illustrated in Figure 1, when a target state posterior is sent
to a connected node, the contents of the local filter would be
directly copied to the corresponding channel filter, and the data
is then transmitted down the link.

(D

When a message is received at the channel filter, data
association is performed with all the local filters to determine
which target the data should be associated with. If associated
to an existing filter, the following operations are performed:

e Prediction of either the received information in time until
it reaches that of the corresponding local filter, or the
local filter and channel filters are propagated forward to
the corresponding time of the received data.

e Removal of information common between the two nodes
from the received message (via a division) before a track-
to-track update can be made at the local filter (via a
multiplication),

e Update of channel filter so that the received information
becomes the new common information.

As a separate channel filter is required for each commu-
nication link, the memory resources and scalability of this
system is dependent on the number of links a node has. Other
drawbacks of channel filtering are that the updates are not
robust to incorrect data association and information that may
be corrupt, and do not account for the correlation of estimate
due to common process noise, which occurs because of the
common error source due to the target dynamics [8]. This
issue is only prominent when the process noise is large.

IV. DECENTRALISED DATA FUSION OPERATIONS WITH
PARTICLE REPRESENTATIONS

A scalable Gaussian based DDF architecture has been
successfully implemented on unmanned ariel vehicles (UAVs)
by Nettleton [4], using a Kalman Filter and its Information
form. Here, local and communicated information was fused
consistently via additive information matrices. However, this
methodology does not lend itself to extensions for non-
Gaussian distributions including particles.

In addition to the issues of performing the operations of
division followed by multiplication or for all generalised
representations, the application of particle representations in
DDF systems also encounters the following issues which are:

e Particles are weighted Dirac delta functions and hence
therefore samples from one particle set do not have the
same support on the space as samples from another
set. Hence, a naive point wise multiplication or division
cannot be applied.

e The communication of particle representations required
significantly more bandwidth compared to other repre-
sentations such as Gaussian mixtures. Bandwidth issues
were also addressed in [1] by summarising the particle
representation Gaussian kernels. Other candidate repre-
sentations include Gaussian mixtures [6] and Support
Vector Machines [15].

A. Multiplication with Particles

Addressed in previous work [1], node-to-node multiplica-
tion can be performed by transforming the particle representa-
tions to continuous distributions by placing a Gaussian kernel
Kp,(x) over each sample [22]:

Kj,(x) = h®K (x) (2)



where K(.) is the rescaled kernel density and h > 0 is the
window or scaling parameter. The continuous distribution is
then sampled with the second set to obtain the new impor-
tance weights so that the weighted sample set represents the
multiplication solution.

B. Division with Particles : Proposed Method and Derivation

The division operation in Equation 1 is the key for consistent
fusion as the process removes common past information
from the received estimate. As with the multiplication of
two discrete particle probability distribution functions (PDFs)
(Zilil wx)(i (xx)) and Zf\; wg)é (x?)), samples repre-
sent densities rather than the underlying function unlike grid
representations. Similar to the multiplication operation, the
discrete sample sets need to be converted to continuous
distributions.

N N

ng)é (x(g)) — pa (x), ng)(S (xg)) — pp (x)
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An importance sampling approximation is then applied on
the continuous distribution. The idea behind Monte Carlo
sampling is to draw N i.i.d samples from a distribution p (x),
such that the target density is approximated by the following
empirical point mass function

N
()~ Y ws (x() (4)
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is the Dirac delta mass located at x;,”. Letting

I(f) be the expectation of some function f integrable with
respect to the PDF p (x) [23]

1(f) = Eyoolf (x)] 2 / fEpEdx G

the Monte-Carlo approximation of the integral with samples
is then

1 & .
In () =5 2 F(x) ©)
i=1

where x(*) ~ p (x) and such that I (f) converges to I (f) as
N — oo.

The true probability distribution p(x) is often hard to
sample from, hence, importance sampling is applied.

The idea of importance sampling is to select a proposal
distribution ¢ (x) in place of p (x). with the assumption that
g (x) encompasses the support space of p (x). The integration
problem (Equation 5) is then rewritten as:

1) = [ 16028 g ax = [ 160w a0 ax

q(x)
(7N
where w (x), the importance weights, is given as
w(x) 2 2% ®)

q(x)

A Monte Carlo estimate of I (f) then becomes

In(f) = ZNj f(xO)w (x@) ©)

For the division operation, the desired probability distribu-
tion is

pa(x)
x) = (10

%= s )
Hence the importance weights in Equation 8 are adjusted to

be:
(4)
w (X(%)) — M (11)
pa (x@) ¢ (x9)

which is then normalised so that Zf\il w (x) = 1/N, where
N is the number of samples.

C. Division with Particles : Selection of Proposal Distribution

The problem that then arises is the selection of the proposal
distribution, ¢ (x). If the proposal distribution selected was a
uniform distribution

q(x) =U(x)

The sample weights ¢ (x(i)) are then all equal at a constant
value of C. Hence the importance weights are:

(7)
@) _ PA (x")
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Figure 2(b) shows the division operation using 1000 samples
drawn from a uniform proposal distribution. While the results
are similar to the true distributions, uniform sampling does not
scale well in higher dimensions. (¢ (x) = U(_2g) (X))

Furthermore, there has to be sufficient support over both
distributions to perform this operation. Some of the particles
may also give negligible contributions to the result, as the
space support of those samples is where the distribution has
low probability. For example, from the division operation
shown in Figure 2(b), the samples lying between x = 7 and
x = 8 provide almost no contribution to the result.

A more scalable solution is to draw samples from another
proposal distribution such as a mixture of Gaussians. The main
requirement of the proposal distribution is to be able to support
the sample space of both the numerator and denominator.
It is assumed that node-to-node fusion update occurs on
when there is new information received. A received estimate
distribution containing the new information would be more
tightly clustered. Hence the common information distribution
in the channel filter would encompass the received estimate
distribution.

Therefore a suitable proposal distribution for the division
operation is

12)

13)

q(x) =psp (x) (14)
The importance weights are then adjusted to be:
(4)
w (x) n () (15)
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(a) True Distribution. (b) Uniformly spaced proposal distribution results (c) Division with weights factored in for samples
obtained from a non-uniform distribution.
Fig. 2. The bottom figure of Figure 2(b) shows the result of a division operation using 1000 samples randomly drawn from a uniform distribution while the

corresponding figure of Figure 2(c) shows the result when 1000 samples randomly are drawn from from the Distribution B (pp (x)) and weighted according
to Equation . Each circle represents the weight of the sample at that point. The particle estimate converted back to a continuous distribution is shown by a
solid red line. In both (b) and (c) the results accurately match the true distribution, shown in (a).

Figure 2(c) shows the result of the division with pp (x) as
the proposal distribution and indicate that the division solution
is accurate when compared to the actual solution (Figure 2(a))
and the division using samples obtained from a uniformly
distributed particle set (Figure 2(b)).

D. Division with Particles: Analysis of Accuracy and Consis-
tency

KL Divergence of Division Operation
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Fig. 3. KL Divergence mean result given the number of particles. As the
number of particles increases, the closer the division solution is to the actual
one.

With a computational complexity of order N, the division
operation is shown to converge to the correct solution as N,
the number of particles, increases. Samples are drawn from
two known Gaussian mixtures shown as the top two figures
in Figure 2.

To analyse the quality of results, two measures are used; the
Kullback-Leibler Divergence and the differential entropy. The
relative entropy or Kullback-Leibler(KL) divergence between
two probability mass functions p(z) and ¢(x) is [24]:

Dipllg) = 3 pler) log 22

= q(x) (1o

The KL Divergence is a measure of shape; it is zero only if the
two distributions are identical. However, the KL Divergence is
not a true distance between distributions as it is not symmetric
and does not satisfy the triangle inequality [24]. However, this
allows several approximate distributions to be ranked in terms
of their divergence to the “true” distribution

For a probability density, the differential entropy or Shannon
entropy is the expected average entropy of the events which
is:

mm:mﬁmmwk»/mmmmmm (17

Entropy is a measure of the compactness of the distribution. If
the entropy of the approximate distribution is lower than the
true distribution, the estimate is optimistic but if the entropy is
higher, nothing definite may be said although a less informa-
tive solution may be implied. Entropy is the only reasonable
definition of informativeness as shown in [25], [26]. This
implies that entropy is an appropriate measure for evaluating
probability distributions and should be used relatively. To best
measure the accuracy and consistency of the approximations
with non-Gaussian distributions, a combination of the KL
Divergence and entropy measures are used.

The KL Divergence and entropy computed between the
sampled division operation and the actual solution, is shown



in Figures 3, 4 respectively. The KL Divergence results shows
that as the number of particles used to perform division
increases, the accuracy of the solution increases. The entropy
results of the kernel fitted division solution is greater or equal
than the actual entropy and converges to the actual entropy at
lower dimensions. The higher entropy than the actual result
is almost certainly due to the increased variance from adding
a kernel over the samples as shown by West [27]. At higher
dimensions, the accuracy of the kernel fitting results is a more
conservative estimate of the division solution. As the kernel
increases the variance of the entire distribution, the resulting
approximation tends to be conservative, which is preferable to
an optimistic solution.
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Fig. 4. 1-D and 2-D entropy of an approximation of the division operation
via sampling vs number of particles.

E. Division with Particles : 4-D DDF Simulation Results

A decentralised bearing-only tracking example was simu-
lated to show the consistency of the division approximation.
In this example, a target exhibiting random walk behaviour
within the x-y plane was tracked by two stationary sensors
providing only bearing information, as shown in Figure 5. The
initial state of the feature was x = 0, £ = 0.5, y = 15 and
y = —0.2. Node 1 was located at x = 8, y = 4 and Node 2
was located at x = 5, y = 0.

The feature is modelled based on the Integrated Ornstein-
Uhlenbeck process [28] which allows for bounding the Brow-
nian velocity over time. The observations were a sequence of
bearing measurements: zp = arctan(z—’;) + v, where z;, is the
target bearing and vy, is the measurement noise. With a process
noise uncertainty of 0.04 in each plane (¢, = g, = 0.04) and a
bearing uncertainty of 0.03 radians squared, the prediction and
update operations occurred at every second. Two nodes were
placed at different positions and perform sequences of bearing
measurements. Prediction and update operations occurred at
every second. The particle sets were initialised with a range
cutoff of 70 m. Each node communicated a summary of its
sample set every four seconds.

Thirty Monte-Carlo runs of the simulation were performed.
The following scenarios were compared:

Path of Target
20 - -

18t
16
14
12}

€
> 8

ol

4}| —w— Path of Target <> Node 1

21| ) Nodet

ot /\ Node 2

/\ Node 2
2+
2 0 2 4 6 8 10 12

Fig. 5. Path of the feature is shown. Each marker shows the true feature
position at a time step. The initial feature position at x = 0 and y = 15. The
stationary sensor nodes are located at x = 8, y =4 and z = 5, y = 0 in the
coordinate frame.

e A centralised scenario where each node communicated
its likelihood to every other node in the network at every
time step. The received and local likelihoods are fused
to tracks through local update operations [29].

e A decentralised scenario where each node communicated
its feature track (a summary of its sample set) every four
seconds. The sample set was converted to kernels as per
Equation for fusion using channel filters.

e A stand-alone scenario where no communication of like-
lihood or estimate occurs.

The performance comparison used for this decentralised
simulation is the centralised solution as it provides the closest
approximation to the ‘true’ solution. Here centralised means
that each node communicates to every other node in the
network at every time step. The samples were converted to
Gaussian kernels for fusion.

Hence the KL-Divergence measure [24] is used to show the
accuracy of the solution in each decentralised or stand-alone
node. The decentralised and stand-alone solutions must contain
equal or less information compared to the actual solution,
which indicates that information was not double counted using
Shannon’s entropy measure [26](Equation 17) .

Figure 6 shows the results of the mean and error of KL-
Divergence of each particle set over time. The error bars at
each time step represent the variance (o2) of the Monte-Carlo
runs at that time step. Node 1 received Node 2’s estimate
at the 4th, 8th, 12th, 16th, and 20th second and fusion was
performed. Node 1 then communicated its estimate to Node
2 at every 2nd, 6th, 10th, 14th, 18th and 22nd second. At
those instances, the KL-Divergence is reduced to nearly zero,
indicating that the division solution gives very similar results
to the centralised solution. Figure 7 shows the entropy results,
which indicate that when fusion is performed, the entropy of
the estimate reduces to a value which is equal or slightly more
than the centralised solution. This indicates the accuracy of
the sampling based division operation, where common past
information is removed as no information was double counted.
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Fig. 6. Kullback-Leibler Divergence results for both nodes. The nodes
performing fusion using a division operation to remove common information
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nodes not performing fusion result in much larger KL Divergence values
which are off the scale of these graphs.
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Fig. 7.  Entropy Results (mean and standard deviation) for both nodes. The
standard deviation is shown by the error bars. The division operation is shown
remove common information as the entropy is equal or slightly more than the
centralised solution when fusion is performed.

Hence, the KL-Divergence and entropy results exhibit a
characteristic saw tooth pattern caused by the communication
characteristics. The errors bars also increase when fusion is
not performed which can be seen in Figure 6. This larger
variance is due to the random process noise added during the
prediction step as the fusion solution varies from centralised
solution also caused by the communication characteristics.
When information is shared between nodes at every fourth
time step, the solution is near-optimal in comparison with the
centralised solution.

V. REAL-TIME RESULTS FOR DDF WITH PARTICLE
REPRESENTATIONS

Data obtained from ground vehicles (Figure 8(a)) was used
to decentralised particle filtering over multiple targets. These
ground vehicles were fitted with a firewire colour cameras
and INS/GPS subsystems as shown in Figure 8(b). The data
sets from two previous ground vehicle logs were used. Each
set contains about 15000 video frames logged at 2 Hz with
a resolution of 1024 by 768 pixels and logged INS/GPS
solutions. Sample video frames are shown in Figure 9. The

process and observation models used can be obtained from a
previous work [2].

(a) Ground platforms. (b) Sensors on the ground platforms.

Fig. 8. Ground platform fitted with a firewire colour camera and an INS/GPS
subsystem.

Fig. 9. Sampled logged data from the colour cameras showing natural
features such as trees and sheds.

The experimental conditions were as follows:

e The platforms represented two ground vehicles support-
ing one node and one sensor each.

e The sensor data was obtained from two different logs at
2 Hz.

e At intervals of 0.2 Hz, a track was communicated.

e The timescales were at synchronised using NTP and
communications was via ethernet.

e The feature extraction algorithms [30], [31] extracted
trees and white objects in the environment such as water
tanks. Only angular information of the feature position
is obtained from the feature extraction results.

The following experimental scenarios were performed:

e A centralised scenario where likelihoods processed at the
sensor was communicated to a single node

o A decentralised scenario where each node communicated
its feature track

e A stand-alone scenario where no sharing of information
occurred to show the estimates of isolated nodes.

When a new target is detected, a filter comprising of 1000
particles is initialised with the first observation as shown
in [2]. To detect if tracks were initialised with spurious
observations, all filters are maintained as “tentative” tracks for
fifteen seconds. After this time, the entropy of the distribution
must be below a threshold or the track will be removed. In
the decentralised scenario, when an estimate was received
and associated to an existing filter, the prediction operation
was performed to time-align the data, where the local filter
and channel filters were propagated to the corresponding time
of the received data. Prior to communication, the particle
representations were summarised to Gaussian mixtures of



30 components to reduce bandwidth and as conversion to a
continuous distribution is required for a decentralised update.
The centralised solution resulted in more features tracked
(due to the entropy threshold heuristic) and more accurately.
When track information was shared amongst the nodes, more
features are tracked compared to the stand-alone solutions.
The number of features was less or equal to the centralised
solution. The feature uncertainty is indicated by how tightly
clustered a track is. When track information is shared, the
solution is less or equally tightly clustered in comparison to
the centralised solution. One of the causes of discrepancies
between the nodes performing DDF are caused by the com-
munication of one estimate at each communication step. As
a result, the uncertainty of a feature track may grow, prior
to being selected for communication. This would result in a
less informative track communicated and hence more likely
to have been pruned. An additional cause of discrepancy was
that the conversion of the particle representations to Gaussian
mixtures required additional computational resources and time.
As there is no sharing of information the maps generated by
the nodes acting independently are different from one another.
Less features are tracked as less information is available.

VI. CONCLUSION

New solutions to remove common past information from
a received state posterior are introduced so that DDF with
channel filtering may be performed consistently with particle
filters. Our solution is to transform the particle set to Gaussian
mixtures for communication to reduce communication band-
width and remove known common past information either
by a division operation of two estimates so that only new
information is updated at the node. The conservativeness
and consistency of the division operation and mixture fitting
methods are shown using KL Divergence and entropy results.
Implementation of the division and multiplication operations
for multiple target tracking in real-time is also shown, using
data logged from field trials.

Although the channel filter allows common information
to be removed accurately, it is limited to a tree connected
network. Other drawbacks of channel filtering include not
accounting for the correlation of estimate due to common pro-
cess noise and memory resources requirements as a separate
channel filter is required for each communication link, which
may be addressed by a conservative fusion update [32], which
can also be performed via importance sampling.
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	Introduction
	Related Work
	Generalised Decentralised Data Fusion
	Channel Filtering

	Decentralised Data Fusion Operations with Particle Representations
	Multiplication with Particles
	Division with Particles : Proposed Method and Derivation
	Division with Particles : Selection of Proposal Distribution
	Division with Particles: Analysis of Accuracy and Consistency
	Division with Particles : 4-D DDF Simulation Results

	Real-Time Results for DDF with Particle Representations
	Conclusion
	References

