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Abstract—This paper examines the notions of consistency and
conservativeness for data fusion involving dependent information,
where the degree of dependency is unknown. We consider
these notions in a general sense, for non-Gaussian probability
distributions, in terms of structural consistency and information
processing, in particular the counting of common information.
We consider the role of entropy in defining a conservative fusion
rule. Finally, we investigate the geometric mean density (GMD)
as a particular fusion rule, which generalises the Covariance
Intersection rule to non-Gaussian pdfs. We derive key properties
to demonstrate that the GMD is both conservative and effective
in combining information from dependent sources.
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I. INTRODUCTION

Data fusion within the Bayesian framework requires depen-

dence between uncertain variables to be defined in terms of

joint probability density functions (pdfs) or conditional pdfs.

However, for some estimation problems, such as decentralised

data fusion (e.g., [18], [1]), maintaining the joint structure

incurs significant bookkeeping and communications overhead

and imposes strong constraints on network topology. Feasible

implementation may necessitate suboptimal fusion procedures

that discard some dependency information. Similar problems

arise when combining information from multiple sources that

include unknown amounts of correlation, such as systematic

modelling errors. These fusion methods necessarily deviate

from the standard Bayesian form.

This paper considers the problem of data fusion when the

dependence between pdfs is unknown or has been discarded.

We wish to properly account for this dependency, and to

define a notion of “conservativeness” so as to avoid becoming

overconfident; to be able to reuse old information without

doing violence to the shape of our uncertainty over the

parameter space. While the idea of a conservative upper bound

on uncertainty (i.e., covariance) has been studied previously in

terms of Gaussian pdfs [13], [7], the structure of the Gaussian

function—unimodal and symmetric, with coincident mean,

median and mode—constrains its behaviour and thereby limits

the generality of such a bound. In this paper, we consider

non-Gaussian distributions and present phenomena that do

not appear with Gaussians. Perhaps most surprising of these

is to note that, for optimal Bayesian data fusion, even with

independent data, entropy can sometimes increase. With these

insights, we make progress towards a general definition of

conservativeness in terms of point-wise lower bounds, the

double counting of common information, entropy increase and

shape preservation.

Our investigation focuses on a particular form of conserva-

tive fusion rule: the geometric mean density (GMD), which

is a generalisation of the Gaussian fusion rule known as

Covariance Intersection (CI) [13]. The two-component form

of the GMD rule, which fuses two pdfs pa (x) and pb (x), is

as follows

pc (x) =
1

ηc
pa (x)

ω
pb (x)

1−ω
(1)

where 0 ≤ ω ≤ 1 and

ηc =

∫
pa (x)

ω
pb (x)

1−ω
dx (2)

is the normalisation constant. In general, the GMD may be

defined in terms of M components

pc (x) =
1

ηc

M∏
i

pi (x)
ωi (3)

where ωi ≥ 0 and
∑M

i ωi = 1. However, for simplicity, we

only consider the two component case for the rest of this paper.

The format of this paper is as follows. The next section

discusses previous work pertaining to consistency, conser-

vativeness and the GMD fusion rule. Section III considers

the role of entropy in data fusion and its relationship to

conservative fusion. Section IV presents key properties of the

GMD which indicate that it is a conservative fusion rule,

and also that it is a good fusion rule insofar as it permits

information gain. These properties offer insights into sufficient

conditions for consistent and conservative fusion of data with

unknown dependence. Section V concludes with a summary

of the key results.

II. RELATED WORK

In this section we examine previous work on the notion of

Bayesian consistency, on conservative fusion in the context of

Gaussian distributions and CI, and various applications of the

GMD rule related to data fusion.

A. Bayesian Consistency

The Bayesian sum and product rules, and inference accord-

ing to Bayes’ theorem, is justified by Jaynes [8, Sections

1.7, 2.1] as having “structural consistency” insofar as they



generate unique solutions. Given the same data, models and

assumptions, the same results are obtained regardless of how

the information is combined (e.g., the results are independent

of fusion order). Zellner [19] considers Bayesian methods

from the perspective of information processing, and notes that,

according to a particular set of information measures, Bayes’

theorem is “100% efficient”; it is a processing rule that entirely

preserves information content.

For Gaussian pdfs, consistency may be expressed in terms

of expectations. That is, the estimated covariance matrix P
is consistent if it is equal to the expected second moment of

the residual between the estimated mean x̂ and the (unknown)

true state xt,

P = E
[
(x̂− xt)(x̂− xt)

T
]
. (4)

However, for non-Gaussian pdfs (e.g., with heavy tails, asym-

metry or multiple modes), the second moment may be a

poor representative of the true shape of the uncertainty over

the parameter space, and so a covariance estimate is not a

sufficient measure of consistency in general.

It is possible also to specify general properties of inconsis-
tency. A pdf is inconsistent if

p (xt) = 0, (5)

since its domain must include the true state. A rule for fusing
two pdfs is inconsistent if it counts the same information

multiple times, since repeated use of the same information

modifies the posterior pdf, violating the uniqueness property

of structural consistency.1 Within the Bayesian framework, it

is possible to fuse dependent pdfs so long as one explicitly

accounts for the common information. Thus, given two pdfs

p (x|Za) and p (x|Zb) that are dependent due to shared data

Za ∩ Zb �= ∅, the normalised product 1
ηp (x|Za) p (x|Zb) is

an inconsistent fusion rule because it counts the common in-

formation twice. However, provided the common information

p (x|Za ∩ Zb) is known, it is possible to remove the repeated

information to obtain an optimal Bayesian estimate.

Theorem 1: The product of dependent pdfs with division by

the common information results in a Bayesian posterior pdf

[2]. If Za = {z1, z2} and Zb = {z2, z3} denote two sets of

data, where z2 = Za ∩Zb is the common information and the

data are conditionally independent such that p (z1, z2, z3|x) =∏
i p (zi|x), then

p (x|Za ∪ Zb) ∝ p (x|Za) p (x|Zb)

p (x|Za ∩ Zb)
(6)

Proof: Applying Bayes’ theorem to each part of the right-

hand-side,

p (x|Za) p (x|Zb)

p (x|Za ∩ Zb)

=
p (z1, z2|x) p (x)

p (z1, z2)
× p (z2, z3|x) p (x)

p (z2, z3)
× p (z2)

p (z2|x) p (x)
1Double counting of information causes fixation on a subset of the data,

undermining the contribution of other data and corrupting the shape of the
posterior pdf.

=
p (z2)

p (z1, z2) p (z2, z3)︸ ︷︷ ︸
=K

×p (z1, z2|x) p (z2, z3|x) p (x)
p (z2|x)

= K · p (z1|x) p (z2|x) p (z2|x) p (z3|x) p (x)
p (z2|x)

= K · p (z1|x) p (z2|x) p (z3|x) p (x)
∝ p (x|z1, z2, z3)

where K is a scalar constant given the data (i.e., K is not a

function of x).

Therefore, repeated fusion of dependent pdfs will give a

unique solution equal to the information extracted from a

single counting of the data.

B. Conservative Gaussian Fusion

In the context of Gaussian pdfs,2 conservative data fusion

has received attention in the development of the CI algorithm

[13]. To fuse two sets of marginal statistics, {x̂a,Pa} and

{x̂b,Pb}, over the space of x when they possess unknown

correlations, one applies the following rule,

P−1
c = ωP−1

a + (1− ω)P−1
b , (7)

P−1
c x̂c = ωP−1

a x̂a + (1− ω)P−1
b x̂b, (8)

where 0 ≤ ω ≤ 1. The CI fusion rule is equivalent to first

inflating the component covariances as Pa

ω and Pb

1−ω , and then

applying the standard Bayesian fusion rule, which is simply a

Kalman update operation.

The CI algorithm satisfies a necessary condition of a con-

servative Gaussian upper-bound

Pc −P � 0, (9)

where P is the covariance estimate that would be generated by

a Kalman update if the correlations were actually known. A

stronger property is that Pc is an upper-bound on the second

moment of the CI estimate errors

Pc � E
[
(x̂c − xt)(x̂c − xt)

T
]
. (10)

This property also holds for non-Gaussian pdfs, although as

stated previously, it is of limited value if the pdf deviates

significantly from a Gaussian shape.

C. Data Fusion and the GMD

The GMD generalises the CI fusion rule to non-Gaussian

probability distributions. Mahler [15] first noted that for a

Gaussian pdf, p (x) = N (x; x̂,P), the covariance inflation

of CI was equivalent to raising the Gaussian function to a

power and normalising,

1

η
p (x)

ω
= N (x; x̂,

P

ω
), (11)

2Both the Kalman filter and CI may also be applied to the moment statistics
of non-Gaussian pdfs, including higher-order moments. However, since a non-
Gaussian pdf and the pdf represented by its first two moments may differ by
an arbitrary amount, we feel justified in referring to the two-moment versions
of the Kalman filter and CI (and, indeed, any two-moment rule) as Gaussian
fusion rules. They are exactly representative only for Gaussians.



and so showed that the CI algorithm is a special case of the

GMD fusion rule (1).

The GMD appears in the probabilistic literature under vari-

ous guises, with different names corresponding to different ap-

plication areas. In the context of decision theory [3, page 312],

the GMD is used to compute the Chernoff bound, where pc (x)
defines a decision boundary between two hypotheses and ω
is chosen to minimise the probability of error by matching

the Kullback-Leibler divergence of pc (x) from the hypothesis

priors, so that D (pc (x) ||pa (x)) = D (pc (x) ||pb (x)). For

this value of ω, the negative log of the normalisation term

− ln ηc is called the Chernoff information. More recently,

the Chernoff information has been applied to data fusion to

select the value of ω for the CI algorithm [7], instead of

the traditional utilities of minimising the determinant or trace.

The term “Chernoff information” also appears as a synonym

for the GMD [10]. Another synonym is exponential mixture
densities [4], [12], even though the pdfs are combined as

a product not a sum. We prefer the name GMD because

fusion is accomplished as the weighted geometric mean of

the component density functions.

Perhaps the earliest and most prevalent instance of the GMD

rule is the logarithmic opinion pool [5], which is applied

to combining pdfs from multiple sources as a “mixture of

experts”. This application is essentially the same as ours,

with a different emphasis: we emphasise common informa-

tion, typically in the form of a common prior, while they

are concerned with different priors but a shared likelihood

function. Logarithmic opinion pools typically optimise ω so

as to minimise the Kullback-Leibler divergence between the

resultant fused pdf and the component pdfs [6]. This is justified

as attempting to minimise the overall deviation from each

expert.

A related fusion rule is proposed by O’Brien [16], which

has the form

pq (x) =
1

ηq
pa (x)

α
pb (x)

β
, (12)

where α, β ∈ [0, 1]. The difference here is that β is not

constrained to equal 1 − α. This rule is described by Zellner

[20] as “quality adjusted” inputs, although with only informal

justification. We shall see in (18) below that the “summation to

one” constraint avoids double counting of common informa-

tion. This property is not satisfied if α and β can change freely.

In particular, α = β = 1 gives the standard Bayes update,

which is valid only if the component pdfs are conditionally

independent. Similarly, a choice of weights such that α+β > 1
implicitly assumes that some degree of dependence is known

and can be accounted for [11].

III. ENTROPY AND CONSERVATIVENESS

While the positive semi-definite property (10) of the CI

algorithm applies to non-Gaussian data fusion, we do not con-

sider a covariance bound sufficient justification for a general

conservative fusion rule. For example, any pdf can be replaced

by another non-Gaussian pdf that has the same mean and

greater covariance, but zero probability at the location of the

true state xt. Approximating the original pdf in this way is

not consistent in the sense defined in (5). The question then is

how to say one pdf is “more conservative” than another. One

possibility is to chose the one that is more “uncertain” than the

other, where a useful measure for uncertainty is the entropy
[14]. It would appear that entropy and conservativeness are

related since higher entropy means that a pdf is flatter, more

spread out, diffuse. Over a discrete or bounded domain, the

maximum entropy pdf is the uniform distribution. However,

as with the covariance upper-bound, having greater entropy is

insufficient to guarantee (5) is avoided.

Since entropy alone is not enough, we propose the

following as sufficient3 conditions for defining a conservative

approximation of a pdf.

A pdf p̃ (x) is a conservative approximation of another
pdf p (x) if it satisfies two properties:

1) The non-decreasing entropy property,

H (p (x)) ≤ H (p̃ (x)) . (13)

2) The order preservation property that ∀xi,xj ,

p̃ (xi) ≤ p̃ (xj) ⇐⇒ p (xi) ≤ p (xj) . (14)

The first property ensures that the uncertainty associated with

the distribution cannot decrease. The second property means

that the two pdfs have the same essential shape, the same

locations of minima and maxima. The relative flatness of

these pdfs is, therefore, directly comparable. An important

consequence of property two is that the inconsistency of (5)

is avoided: p (x) > 0 =⇒ p̃ (x) > 0.

Theorem 2: Let p (x) be a continuous pdf over an un-

bounded domain4 and let p̃ (x) be a conservative approxima-

tion which obeys (14). The approximation is guaranteed to be

consistent in the sense that

p̃ (x) = 0 ⇐⇒ p (x) = 0. (15)

Proof: Suppose there exists an xi such that p̃ (xi) = 0 and

p (xi) = ε > 0. Thus, p̃ (xi) ≤ p̃ (xj) for all xj . However,

there exists an xj such that p (xj) < ε, as p (x) goes to zero

almost everywhere, (since its integral is finite). Therefore,

∃xj : p̃ (xi) ≤ p̃ (xj) and p (xi) > p (xj) ,

which is a contradiction of (14). And so, to satisfy the order

preservation property, p̃ (x) = 0 if and only if p (x) = 0.

When considering the role of entropy with regard to data

fusion, it is worth noting an important distinction between

Gaussian and non-Gaussian pdfs. Optimal fusion, via Bayes’

theorem, of two Gaussian pdfs always results in a decrease

3We do not presently know whether these properties are necessary condi-
tions; there may exist alternative sufficient conditions.

4This theorem also holds for bounded domains provided p (x) < ε at some
point in the domain (e.g., goes to zero at a boundary).
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Fig. 1. A Gaussian mixture example showing that Bayesian fusion of two
independent pdfs with entropies Ha = 0.27 and Hb = −0.09, respectively,
can generate a pdf with higher entropy, Hr = 0.66.

in entropy,5 which may be interpreted as gaining information

or becoming less uncertain. But optimal fusion of two

non-Gaussian pdfs, may generate a result that has higher

entropy than either component. For instance, in Figure 1 we

have two Gaussian mixture pdfs where pb (x) ≈ 1/pa (x)
over the region of significant probability mass. Such pdfs may

arise from legitimate sources, be independent and consistent,

such that Bayesian fusion is correct and optimal, but the

result pr (x) =
1
ηpa (x) pb (x) is more uncertain because the

evidence is conflicting. Fundamentally, Bayesian data fusion

is about combining all available information, not reducing

uncertainty.

IV. PROPERTIES OF THE GMD FUSION RULE

The GMD is compelling as a practical fusion rule and for

the insights it provides on conservative fusion in general. In

this section, we show that it has properties that appear to

satisfy necessary conditions of conservativeness: it does not

double count common information and it replaces independent

information by conservative approximations. Furthermore, it

permits an increase in information, thus making it a useful
fusion rule when combining information from multiple de-

pendent sources.

A. The GMD is a Conservative Fusion Rule

To show that the GMD is conservative, we first demonstrate

that we can make a conservative approximation of pdf p (x)
by raising it to a power p (x)

ω
, where 0 < ω ≤ 1. It is trivial

from inspection that p (x)
ω

is order preserving

p (xi) < p (xj) ⇐⇒ p (xi)
ω
< p (xj)

ω
, ∀xi,xj . (16)

5In this instance we are referring to the differential entropy, which ranges
between ±∞ (e.g., H = −∞ for a Gaussian with variance σ2 → 0, and
H = ∞ for a Gaussian with σ2 → ∞). For this paper, having negative
entropies is of no special consequence, since we are only interested in ranking
uncertainties over a common domain on the continuum from −∞ to +∞, so
as to quantify whether one pdf is “more uncertain” than another. The findings
of this paper, including the possibility of entropy increasing after optimal
fusion, apply equally to discrete probabilities and discrete entropy (which is
always positive). Hence, we refer to both differential and discrete entropy
simply as “entropy”.

Also p (x)
ω

tends towards one at all points thereby increasing

the flatness of the function, |1− p (x)
ω | ≤ |1− p (x) | for

all x. Thus, pa (x)
ω

has less influence than pa (x); it exerts

less change on pb (x), so that pb (x) has shape more similar

pa (x)
ω
pb (x) than to pa (x) pb (x). The GMD applies this

change reduction property bilaterally, pb (x)
ω

also has reduced

influence on pa (x). Furthermore, the normalised pdf 1
ηω

p (x)
ω

exhibits an increase in entropy as follows.

Lemma 1: Raising a pdf to a power less than one, and

normalising, increases its entropy.

H (pω (x)) ≥ H (p (x)) , 0 < ω ≤ 1 (17)

where pω (x) = 1
ηω

p (x)
ω

and ηω =
∫
p (x)

ω
dx.

Proof: The derivative
dH(pω(x))

dω is non-positive for all

ω > 0 (see the Appendix for details). Therefore the entropy

is non-increasing, and has a lower value for ω = 1 than for

0 < ω < 1.

Note that showing p (x)
ω

is a conservative approximation

of p (x) is not sufficient to prove that (1) is conservative.

Although each component is replaced by a conservative ap-

proximation, the approximations remain dependent on each

other, and their normalised product may still be optimistic.

However, we can further decompose the GMD into dependent

and independent parts, and show that the common information

is counted only once.

Theorem 3: The GMD does not double count common

information [9].

pc (x) =
1

η
p (x|Za)

ω
p (x|Zb)

1−ω

∝ p (Za\Zb|x)ω p (Zb\Za|x)1−ω
p (Za ∩ Zb|x) p (x)

(18)

Proof: The data is presumed to be conditionally indepen-

dent, such that p (Za|x) = p (Za\Zb|x) p (Za ∩ Zb|x), and

so

p (x|Za)
ω
p (x|Zb)

1−ω

∝ (p (Za|x) p (x))ω (p (Zb|x) p (x))1−ω

= p (Za|x)ω p (Zb|x)1−ω
p (x)

= (p (Za\Zb|x) p (Za ∩ Zb|x))ω
(p (Zb\Za|x) p (Za ∩ Zb|x))1−ω

p (x)

= p (Za\Zb|x)ω p (Zb\Za|x)1−ω
p (Za ∩ Zb|x) p (x)

Therefore, the GMD has two properties that seem essential

to the notion of a general conservative fusion rule.

A fusion rule is conservative if and only if it satisfies
two properties:

1) It does not double count common information,
2) It replaces each component of independent infor-

mation with a conservative approximation.

A further compelling property of the GMD as a conservative

fusion rule is its ability to bound the fused pdf from below.



This property arises from the fact that the normalising constant

in (1) is never greater than unity.

Lemma 2: The normalising constant from GMD fusion,

ηc(ω) =
∫
pa (x)

ω
pb (x)

1−ω
dx, is a convex function in ω

[12].

Proof: We presume that pa (x) and pb (x) are different

but have common support. Let f(x, ω) = pa (x)
ω
pb (x)

1−ω
,

then the first derivative is

∂f(x, ω)

∂ω
=

∂

∂ω

(
pa (x)

pb (x)

)ω

pb (x)

= f(x, ω) ln
pa (x)

pb (x)
, (19)

and the second derivative is

∂2f(x, ω)

∂ω2
= f(x, ω)

(
ln

pa (x)

pb (x)

)2

. (20)

This is strictly positive as a function of ω, therefore f(x, ω)
is convex in ω and hence ηc is a convex function of ω.

Since ηc = 1 at the boundaries, when ω is zero or one, the

above lemma implies that ηc ≤ 1 for 0 < ω < 1. In addition,

a basic property of the weighted geometric mean is that if

x ≤ y then x ≤ xωy1−ω ≤ y for any 0 ≤ ω ≤ 1. From these

two properties we can show that the GMD is bounded below

point-wise by the minimum value of its component pdfs.

Theorem 4: The GMD is bounded below by the minimum

of its component functions for all x [17], [12].

pc (x) ≥ min{pa (x) , pb (x)}, ∀x. (21)

Proof: The (non-normalised) weighted geometric mean

always lies between the two component functions

min{pa (x) , pb (x)} ≤ pa (x)
ω
pb (x)

1−ω

≤ max{pa (x) , pb (x)}, ∀x.
Therefore, the GMD can fall below min{pa (x) , pb (x)} only

if ηc > 1, which is impossible according to Lemma 2.

Remark 1: A consequence of this “bounding below” prop-

erty is that, if we have multiple dependent pdfs, and each

pi (x0) is non-zero at a point x0, then repeated fusion of

dependent information with the GMD cannot cause pc (x0)
to diminish to zero at x0. The component pdf with minimum

value at x0 defines the lowest possible value of pc (x0), so

that

pc (x) ≥ min{pi (x)}i, ∀x. (22)

It prevents overconfidence in saying “the true state xt is not
here” for some location x0. This indicates that GMD can be

applied recursively without tending to generate results that are

optimistic in a point-wise sense.

B. The GMD is an Effective Fusion Rule

A conservative fusion rule is not effective or useful unless it

can also improve our knowledge of the uncertain states; it must

be able to properly combine the available information. But it

is important to realise that to “combine information” does not

necessarily mean to “optimise an information measure,” such

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
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Fig. 2. An example where the GMD rule (ω = 0.57) generates a pdf with
a higher maximum peak probability than either component pdf.

as to reduce entropy. We saw in Section III that there exist

cases where optimal Bayesian fusion increases entropy, where

combining information increases our measure of uncertainty.

Nevertheless, for Bayes’ theorem to be a useful fusion rule

it must have the potential to reduce entropy, even if it does

not do so in every case. In this section we show that the

GMD is similarly effective insofar as it has the potential to

optimise an information measure, such as entropy reduction.

We also postulate that the GMD behaves sensibly in cases

where optimal Bayesian fusion causes entropy to increase.

To show that information gain is possible with the GMD it

is sufficient to disprove that GMD fails to increase information

for all instances of pa (x) and pb (x). Thus, we have only to

provide a single case, a pair of pdfs and a value for ω, for

which it increases the information measure. (We do not prove

that the GMD always increases information, since it clearly

does not. One can easily find pdf pairs for which the GMD

gives no increase in these measures, regardless of ω. Of course,

the GMD can always equal that of the best component pdf by

simply choosing ω = 0 or ω = 1.)

The following theorems demonstrate that the GMD has the

potential to increase information content according to two

measures: the maximum peak probability6 and the entropy.

Theorem 5: The GMD has the potential to increase the

maximum peak probability. There exist pairs of pdfs pa (x)
and pb (x) such that, for some choice of ω,

max pc (x) > max{max pa (x) ,max pb (x)} (23)

Proof: It is trivial to generate a single empirical example,

as shown in Figure 2, thereby proving existence. However,

(23) is not true for 1-D Gaussian pdfs, which will always be

optimal when ω = 0 or ω = 1.

Theorem 6: The GMD has the potential to decrease en-

tropy. There exist pairs of pdfs pa (x) and pb (x) such that,

for some choice of ω,

H (pc (x)) < min{H (pa (x)) , H (pb (x))} (24)

6Choosing ω to maximise the peak probability of the GMD is suggested
by Mahler [15]. It is worth noting that the choice of ω that maximises peak
probability is not the same, in general, as the ω that minimises entropy, but
these properties do coincide for Gaussian pdfs.



Proof: This property is also trivial from empirical exam-

ple, and is well-known for the special case of CI. It is not

possible to decrease entropy for 1-D Gaussians; the optimum

will always be ω = 0 or ω = 1.

Further to these results, our empirical experiments7 indicate

that the potential for the GMD to decrease entropy exists

only if optimal Bayesian fusion of the same pdfs results in

an entropy decrease. We therefore hypothesise that if optimal

Bayesian fusion, with dependencies known and accounted for,

causes entropy to increase, then the GMD of the component

pdfs, where dependencies are neglected, is unable to decrease

entropy, and so the minimum entropy GMD occurs at ω = 0
or ω = 1.

Conjecture 1: If optimal Bayesian fusion does not decrease

entropy, then the lower bound entropy for the GMD is that of

a component pdf. Suppose we have three independent pdfs

pi (x), pj (x) and pk (x). Optimal fusion of these components

is given by

pr (x) =
1

ηr
pi (x) pj (x) pk (x) . (25)

Suppose further that we have combined estimates pa (x) =
1
ηa
pi (x) pk (x) and pb (x) = 1

ηb
pj (x) pk (x). We fuse these

dependent components according to the GMD.

pc (x) =
1

ηc
pa (x)

ω
pb (x)

1−ω

=
1

ηc
pi (x)

ω
pj (x)

1−ω
pk (x) . (26)

We suggest that if

H (pr (x)) < min {H (pa (x)) , H (pb (x))} , (27)

then there exists a ω ∈ [0, 1] such that the minimum entropy

GMD is

H (pr (x)) ≤ H (pc (x)) ≤ min {H (pa (x)) , H (pb (x))} .
(28)

Conversely, if

H (pr (x)) ≥ min {H (pa (x)) , H (pb (x))} , (29)

then the minimum entropy GMD is

H (pr (x)) ≥ H (pc (x)) ≥ min {H (pa (x)) , H (pb (x))} .
(30)

�
Thus, we expect that if (27) is true, then the entropy of

the GMD is bounded below by H (pr (x)). Otherwise, it

is bounded below by min {H (pa (x)) , H (pb (x))} and the

minimum entropy occurs at ω = 0 or ω = 1.

It is easy to demonstrate empirically that (29) can be

true, as shown in Section III, and this possibility raises an

interesting conundrum for the GMD. If optimal fusion can

increase entropy, by what criteria should one choose ω? It

7We performed fusion experiments on randomly generated discrete prob-
abilities and Gaussian mixture pdfs. We have as yet been unable to find a
contradiction to Conjecture 1.

is no longer clear that minimising entropy makes sense. Ar-

guably a more general measure is to minimise the divergence,

such as the Kullbach-Leibler divergence, of the conservative

approximation from the optimal pdf [7]. Properly justifying

our optimisation criteria for ω remains as future work.

C. The GMD and the AMD
The GMD is not the only fusion rule to possess the “no dou-

ble counting” property. An alternative is the arithmetic mean
density (AMD), also referred to in the statistical literature as

linear opinion pools [5],

pm (x) = ωpa (x) + (1− ω)pb (x) . (31)

As with the GMD, the AMD approximates the independent

information and counts the common information only once.
Theorem 7: The AMD does not double count information.

pm (x) = ωp (x|Za) + (1− ω)p (x|Zb)

∝ (ωp (Za\Zb|x) + (1− ω)p (Zb\Za|x))
.p (Za ∩ Zb|x) p (x) (32)

Proof: The data is presumed to be conditionally indepen-

dent, such that p (Za|x) = p (Za\Zb|x) p (Za ∩ Zb|x), and

so

ωp (x|Za) + (1− ω)p (x|Zb)

∝ ωp (Za|x) p (x) + (1− ω)p (Zb|x) p (x)
= ωp (Za\Zb|x) p (Za ∩ Zb|x) p (x)

+ (1− ω)p (Zb\Za|x) p (Za ∩ Zb|x) p (x)
= [ωp (Za\Zb|x) + (1− ω)p (Zb\Za|x)]

· p (Za ∩ Zb|x) p (x)

However, the AMD and the GMD are qualitatively

different rules for combining information. The GMD has a

form similar to the product rule and Bayes’ theorem, and so

is properly seen as a fusion rule for dependent information. It

addresses dependence but requires that each component pdf

is individually consistent (e.g., the GMD will be inconsistent

if pa (xt) = 0). The AMD, on the other hand, performs

amalgamation not fusion, and generates a mixture model

from the component pdfs. Its form is related to the sum
rule, and as such it marginalises over the set of hypotheses
given by the component pdfs, and so can incorporate both

consistent and inconsistent hypotheses.

The GMD is potentially inconsistent if a single compo-
nent is inconsistent. The AMD is conservative if even a
single component is consistent.

While the AMD behaves as a valid conservative fusion

rule, it does not possess the potential to gain information, as

described in Section IV-B. The “fused” solution always lies

between the component pdfs

min{pa (x) , pb (x)} ≤ pm (x) ≤ max{pa (x) , pb (x)}, ∀x.
(33)



By comparison, the GMD is not “bounded above” by

max{pa (x) , pb (x)}.

Theorem 8: The GMD is not bounded above; it may exceed

the maximum of its component functions [12]. There exists an

x such that

pc (x) ≥ max{pa (x) , pb (x)}. (34)

Proof: Suppose that (34) is false, so that

pc (x) < max{pa (x) , pb (x)}, ∀x. (35)

This implies

f(x, ω) = ηcpc (x)

< ηc max{pa (x) , pb (x)}
<= max{pa (x) , pb (x)}, ∀x, ω, (36)

In particular, for ω = 0, we get f(x, ω) = pb (x) < pb (x),
which is clearly false. By contradiction, there must exist at

least one x such that pc (x) ≥ max{pa (x) , pb (x)}.

This “not bounded above” property is also supported by

(21), since the value of pc (x) will equal or exceed pa (x)
and pb (x) at every point where they intersect, whereas the

AMD will merely give equality. We can further strengthen

this property to show that whenever ηc < 1 the GMD result

will strictly exceed both component pdfs at some point.

Corollary 1: The GMD will strictly exceed the component

functions for some x if and only if ηc < 1.

∃x : pc (x) > max{pa (x) , pb (x)} ⇐⇒ ηc < 1 (37)

Proof: Similar to Theorem 8, we obtain a contradic-

tion to the supposition that pc (x) ≤ max{pa (x) , pb (x)}
for all x when ηc < 1, since this implies f(x, ω) ≤
ηc max{pa (x) , pb (x)} < max{pa (x) , pb (x)}.

V. CONCLUSION

This paper investigates the notions of consistency and

conservativeness in the context of Bayesian data fusion. We

consider existing justifications of Bayes’ theorem; it has

“structural” consistency, generates unique solutions, preserves

information, and does not double count common information.

We propose that a conservative estimate is one that is consis-

tent when dependencies between component pdfs are neglected

or unknown.

The GMD is justified as a conservative fusion rule. It has

the same essential “product form” as Bayes’ theorem, it does

not double count common information, and it replaces the

independent information with a conservative approximation. A

consequence of this form is that GMD estimates are “bounded

below” point-wise by the minimum of the component pdfs.

This prevents inconsistent behaviour when applied to recursive
fusion with dependent information. The GMD also has the

potential to reduce entropy, indicating its ability to effectively

combine available information.

Further to providing justification of the GMD as a conser-

vative fusion rule (and the CI algorithm as a special case),

this paper provides general insights into the nature of conser-

vativeness. We see not double counting common information

as a necessary condition for consistency. We demonstrate that

entropy is not a sufficient condition for conservativeness, and

suggest that conservative approximations involve both entropy

increase and order preservation. A surprising property of non-

Gaussian data fusion is that entropy may increase, which

shows that fundamentally Bayesian data fusion concerns com-

bining information, not reducing uncertainty. The possibility

of entropy-increasing fusion raises a question for the GMD as

to the optimisation of ω. We shall investigate the notion of

optimality for conservative estimation in future work.
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APPENDIX

The following proof of Lemma 1 shows that the derivative

of the differential entropy with respect to ω is non-positive.

This, in turn, implies that the entropy is non-increasing for

ω > 0 and, in particular, that H (p (x)) ≤ H (pω (x)) for

0 < ω ≤ 1, where pω (x) = 1
ηω

p (x)
ω

and ηω =
∫
p (x)

ω
dx.

We first note that

ln pω (x) = ω ln p (x)− ln ηω, (38)

and, given the identity dux

dx = ux lnu, that

dηω
dω

=

∫
d

dω
p (x)

ω
dx =

∫
p (x)

ω
ln p (x) dx. (39)

Therefore,

dln pω (x)

dω
= ln p (x)− 1

ηω

∫
p (x)

ω
ln p (x) dx. (40)

Given the identity du
dx = udlnu

dx , we get

dpω (x)

dω
=

p (x)
ω
ln p (x)

ηω
− p (x)

ω

η2ω

∫
p (x)

ω
ln p (x) dx

= pω (x) ln p (x)− pω (x)

∫
pω (x) ln p (x) dx.

(41)

Furthermore,∫
dpω (x)

dω
dx =

∫
pω (x) ln p (x) dx

−
∫

pω (x) dx︸ ︷︷ ︸
=1

∫
pω (x) ln p (x) dx

= 0. (42)



Therefore, the derivative of the differential entropy with re-

spect to ω is as follows

dH (pω (x))

dω
= −

∫
d

dω
(pω (x) ln pω (x) dx)

= −
∫

dpω (x)

dω
ln pω (x) dx−

∫
dpω (x)

dω
dx︸ ︷︷ ︸

=0

.

(43)

Expanding (43) in terms of to (41), we get

dH (pω (x))

dω
= −

∫
pω (x) ln pω (x) ln p (x) dx︸ ︷︷ ︸

(a)

+

∫
pω (x) ln pω (x) dx

∫
pω (x) ln p (x) dx︸ ︷︷ ︸

(b)

. (44)

The component terms may be further expanded as

(a) =

∫
pω (x) (ω ln p (x)− ln ηω) ln p (x) dx

= ω

∫
pω (x) ln p (x)

2
dx− ln ηω

∫
pω (x) ln p (x) dx,

(45)

(b) =

∫
pω (x) (ω ln p (x)− ln ηω) dx

∫
pω (x) ln p (x) dx

=

(
ω

∫
pω (x) ln p (x) dx− ln ηω

)∫
pω (x) ln p (x) dx.

(46)

Substituting these back into (44) we get

dH (pω (x))

dω

= −ω

∫
pω (x) ln p (x)

2
dx+ ω

(∫
pω (x) ln p (x) dx

)2

= −ω

∫
pω (x) ln p (x)

2
dx

+ 2ω

(∫
pω (x) ln p (x) dx

)2

− ω

(∫
pω (x) ln p (x) dx

)2 ∫
pω (x) dx︸ ︷︷ ︸

=1

= −ω

∫
pω (x)

[
ln p (x)

2 − 2 ln p (x)

∫
pω (x) ln p (x) dx

+

(∫
pω (x) ln p (x) dx

)2
]
dx

= −ω

∫
pω (x)

(
ln p (x)−

∫
pω (x) ln p (x) dx

)2

dx.

(47)

This is clearly non-positive for ω > 0.
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