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Abstract—Novel lazy Lauritzen-Spiegelhalter (LS), lazy
Hugin and lazy Shafer-Shenoy (SS) algorithms are devised for
Gaussian Bayesian networks (BNs). In the lazy algorithms,
the clique potentials and separator potentials are kept in
combinable decomposed form instead of combined to be
a single valuation in conventional junction tree algorithms.
By employing decomposed form potentials, the independence
relations between variables are explored online and the directed
graph information is utilized in the message calculations.

In the proposed algorithms, a consistent junction tree with
the evidence entered can be obtained by a single round
of message passing. The moments form parametrization of
Gaussian distributions allows the deterministic relationships
between variables.

Preliminary analysis shows that the lazy LS algorithm and
the lazy Hugin algorithm are more computationally efficient
than the lazy SS algorithm, especially when there are multiple
items of evidence to be incorporated.

Keywords-Gaussian Bayesian networks; lazy propagation;
arc reversal; junction tree algorithms

I. INTRODUCTION

Bayesian networks (BNs) [1], [2] offer an intuitive and
compact graphical-model representation for reasoning under
uncertainty and have been widely used. The probabilistic
inference task in BNs is usually defined as computing the
posterior marginals over a set of target variables given
evidence. Direct inference algorithms, like arc reversal (AR)
[3], symbolic probabilistic inference [4], operate directly on
BNs. Direct algorithms must be implemented once for each
set of target variables. Junction tree algorithms are indirect
inference algorithms which operate in a secondary computa-
tional structure of a junction tree constructed from BN. Such
algorithms include LS algorithm [5], Hugin algorithm [6],
and SS algorithm [7]. Inference tasks for different sets of
target variables can be accomplished by a round of message
passing on the same junction tree. Lazy propagation [8]
is a hybrid inference algorithm introducing direct inference
algorithm of Variable Elimination [9] to the message calcu-
lations in SS algorithm. In the lazy propagation, potentials
are stored in factored form when initializing a junction tree
and are only combined when required. Lazy propagation
often outperforms the traditional junction tree algorithms in
terms of computation efficiency [8]. Two variants of lazy

propagation employing symbolic probabilistic inference [4]
and AR [10] are proposed in [11].

Junction tree algorithms are originally developed for dis-
crete BNs. The inference in BNs of conditional Gaussian dis-
tributions is first solved by employing the canonical form (or
information form) parametrization of conditional Gaussian
distributions [12] in the Hugin structure; which scheme has
numerical instability and can not handle the deterministic
relationships between two variables. The weaknesses are
overcome in later researches [13], [14], [15] employing
the moments form parametrization. Though the inference
algorithms for Gaussian BNs can be unified in the general
schemes in [13], [14], [15], the implementation is pretty
much different from the case of conditional Gaussian BNs;
the latter was subjected to limitations from the asymmetries
of discrete and continuous variables. The junction tree
algorithms are finding applications in Gaussian BNs, e.g. the
simultaneous localization and mapping problem in robotics
field [16]; it is necessary to develop algorithms specially for
the Gaussian BNs for quick reference.

This paper develops lazy inference algorithms for Gaus-
sian BNs by combining AR with LS, Hugin and SS algo-
rithms. Our algorithms are lazier than the lazy propagation
in [8]; the potentials are retained in decomposed form and
explicit combination operations can be avoided completely.
The algorithms developed in [14], [15] are close to our
schemes; the decomposed form potentials are always kept
and arc reversal is adopted for maginalisation. As to the
algorithm in [14], the decomposed form of potentials is
resulted from passing messages on an elimination tree,
which induces constraints on the elimination order com-
pared to a junction tree. The algorithm is developed in
LS structure. As for the algorithm in [15], it is in SS
structure and the statements about evidence incorporation are
imprecise. Except for the LS and SS structures, we devise
lazy algorithm in the Hugin structure as well.

The format of the paper is as follows. The next section
briefly introduces Gaussian BNs and the conditional Gaus-
sian distributions. Section III presents how the directed graph
information can be utilized in the combination and decom-
position of potentials. Section IV develops the computation
operators for the lazy propagation schemes and analyzes

2010 22nd International Conference on Tools with Artificial Intelligence

1082-3409/10 $26.00 © 2010 IEEE

DOI 10.1109/ICTAI.2010.51

303



the incorporation of continuous evidence in moments form.
Section V to Section VII propose the lazy algorithms in the
framework of LS, Hugin and SS respectively. Conclusions
are provided in the last section.

II. GAUSSIAN BN

For two vectors of continuous random variables y and x,
assume the distribution of y given x satisfies

P (y|x) = N (A +Bx, Q), (1)

where A is a constant vector, B is a constant matrix, Q
is a positive semidefinite matrix, and N (·, ·) denotes a
multivariate Gaussian distribution with mean and covariance
parameters. The distribution in (1) is referred to as a
Gaussian conditional distribution. If there are deterministic
relations between the elements in y and x, Q is singular
and P (y|x) degenerates to a lower dimension Gaussian
distribution.

The conditional distribution in (1) is represented as φ =
(A,B,Q)[y|x] or φ[y|x] when the parameters are of less
concern. The vector y is the head of φ, h(φ) = y. The vector
x is the tail, t(φ) = x. The domain is denoted dom(φ) =
h(φ) ∪ t(φ). For a group of conditional distributions Φ, the
head set is defined as h(Φ) =

⋃
φi∈Φ h(φi), and the tail set

is defined as t(Φ) =
⋃
φi∈Φ t(φi) \ h(Φ). The domain is

given as dom(Φ) = h(Φ) ∪ t(Φ) =
⋃
φi∈Φ dom(φi).

Define the domain graph induced by a single-head condi-
tional distribution φ[v|T ] as Gφ = ((v, T ), (w,v)|w ∈ T ),
where the head v is represented by solid circle filled in
dark while the tail w is represented with dashed circle.
Sometimes the group of tail nodes can be represented
collectively as one circle. The domain graph induced by a set
of single-head conditional distributions Φ = {φ1, · · · , φk}
is defined as GΦ =

⋃
i=1,··· ,k Gφi . See an example in Fig.

1(a). There are two single-head conditional distributions,
φ1[y|I, J ] and φ2[x|y, J,K]. If denote Φ = {φ1, φ2}, we
have h(Φ) = {x,y} and t(Φ) = {I, J,K}.

A Gaussian BN N consists of a set of Gaussian con-
ditional distributions Φ with h(Φ) = t(Φ) = V and its
domain graph G. G is a directed acyclic graph over V ;
each node of the graph corresponds one-to-one with a
vector of variables v ∈ V and associates with a Gaussian
conditional distribution φ[v|pa(v)] ∈ Φ, where pa(v) is the
set of variables corresponding to the parents of the node
representing v in the graph. The children of node v is
denoted ch(v).

A Gaussian BN induces a multivariate Gaussian distribu-
tion over V which can be decomposed into a set of Gaussian
conditional distributions, one for each node,

P (V) =
⊗
x∈V

P (x|pa(x)). (2)

Note, we use the symbol
⊗

instead of
∏

since the com-
position of continuous distributions is not commutative in

general as multiplication of discrete distributions. Figure
2(a) gives a Gaussian BN, which is the continuous part of
the mixed BN of Fig. 6 in [13] and Fig.4 in [14].

III. UTILIZING DIRECTED GRAPH INFORMATION

Revealing the directed information is to explore the
conditional dependence and independence relationships to
simplify the computations in directed graphical models.
The topological order of the nodes of a directed graphical
model is a useful tool for utilizing directed information.
A topological order TOP(G) of the nodes in a directed
graphical model G satisfies that for any node v, its parents
come before v and its children appear later than v.

A. Conditional Distribution Composition

The composition of conditional distributions is the re-
duced case of the combination of conditional Gaussian
potentials in [13] to the pure continuous variables. The
combination is the most complicated part of computations
in [13]. Directed graph information is explored to simplify
the distribution composition.

Consider two conditional distributions

φ1 = (A, [BI : BJ ], Q)[y|I, J ],
φ2 = (E, [Fy : FJ : FK ], R)[x|y, J,K] (3)

where I = pa(y) \ pa(x), J = pa(y) ∩ pa(x) and K =
pa(x)\pa(y). The composition is defined as ψ = φ1⊗φ2 =
(U, V,W )[y,x|I, J,K], where

U =
(

A
E + FyA

)
, V =

(
BI : BJ : 0

FyBI : FJ + FyBJ : FK

)
,

W =
(
Q QFTy
FyQ R + FyQF

T
y

)

The domain graph GΦ induced by Φ = {φ1, φ2} is given
in Fig. 1(a). The graph operation of the composition is
first changing the arc y → x to an undirected link (y,x),
then adding arcs from the nodes in I to x and from the
nodes in K to y; the resultant domain graph Gψ is shown
in Fig. 1(b). If the composition is carried out in a larger
domain graph G′

Φ, the newly introduced arcs can not be in
opposite directions with the original arcs. The condition has
the following equivalent expressions:

1) there is no other directed path from y to x;
2) there is no other child of y in front of x in TOP(G′

Φ);
3) there is no child of y in K .

Given a set of Gaussian conditional distributions Φ, order
them such that the heads are in order with respect to
TOP(GΦ), then the conditional distributions can be combined
recursively in that order. For example, the TOP of the BN
in Fig. 2(a) is f, d, c, e, b. A valid composition order can
be determined by ordering the conditional distributions such
that the heads are in order with respect to TOP.
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B. Gaussian Arc Reversal and Graph Elimination

Arc reversal [10], [11] is the graphical form application
of Bayes’ theorem. For Gaussian conditional distributions,
the results of arc reversal have closed form. Consider φ1 and
φ2 given in Section III-A. After arc reversal, we have

φ
′
1 = (A′, B′, Q′)[y|x, I, J,K],

φ
′
2 = (E′, F ′, R′)[x|I, J,K] (4)

For φ
′
1, we have

A′ = A− L(E + FyA),
B′ = [L : BI − LFyBI : BJ − L(FJ + FyBJ) : −LFK ],

Q′ = Q− LFTy Q,

where L = QFTy (R + FyQF
T
y )− and M− denotes an

arbitrary generalized inverse of the matrix M [17]. For φ
′
2,

we have

E′ = E + FyA,

F ′ = [FyBI : FJ + FyBJ : FK ],

R′ = R+ FyQF
T
y

Equation 4 extends the scalar case in [10] to the general
vector case. The graphical illustration of arc reversal is
shown in Fig. 1(c).

When the operation is implemented in a larger domain
graph induced by multiple conditional distributions includ-
ing φ1 and φ2, the resultant graph should not contain
directed cycles, or equivalently, the new arcs can not be in
opposite directions with the remained previous arcs. Thus
the same condition as that for combination is required.

In a domain graph G, only the arcs between two solid
nodes can be reversed. For a given node y, the arcs from y to
x ∈ ch(y) must be reversed in order with respect to TOP(G).
When all the arcs y → x are reversed, y can be eliminated
from the BN. Consider eliminating the node f from the BN
in Fig. 2(a). The arc f → d must be reversed before f → e.
After reversing the two arcs, the BN is shown in Fig. 2(b),
where f can be eliminated since it has no children.

When there are multiple nodes to be eliminated, elimi-
nating them in reverse order with respect to TOP(G) can
avoid unnecessary arc reversals [10]. Similarly, the arcs from
z ∈ pa(y) to y must be reversed in reverse order with
respect to TOP(G). When all the arcs z → y are reversed,
the evidence y = y can be instantiated.

C. A Decomposition Algorithm

Consider a set of Gaussian conditional distributions Φ
with its domain D and head H . Given a partition H =
[H1, H2], the joint distribution

⊗
Φ can be decomposed to

the marginal over D \H2 and its complement,⊗
Φ = (

⊗
Φ)↓D\H2 (

⊗
Φ)H2|(D\H2).

I J K

y x

(a) Domain graph

I J K

y x

(b) Composition

I J K

y x

(c) Arc reversal

Figure 1. Illustration of composition of conditional distribu-
tions and arc reversal.

f

d e

c

b

(a) BN

f

d e

c

b

(b) node elimination

Figure 2. Node elimination using arc reversals.

The computation can be accomplished with a sequence of
arc reversal operations. Note none conditional distributions
are combined in the process of the computation. Composi-
tion of conditional distributions can be implemented in the
end if required. The decomposed forms of the marginal and
the complement are denoted Φ↓ and Φ| respectively. The
domain graph induced by Φ is denoted G.

IV. JUNCTION TREE OPERATIONS

To utilize the directed graph information in the junction
tree algorithms, it is convenient to keep the conditional dis-
tributions of each node separately instead of combining them
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Algorithm 1 Decomposition of Gaussian BNs

• Input: Φ, H = [H1, H2], G
• Output: Φ↓ and Φ|

1) Initialize: Φ↓ = Φ, Φ| = ∅;
2) For each node vj ∈ H2 in reverse order with respect

to TOP(G):
a) Φj = {φ ∈ Φ↓|vj ∈ dom(φ)}, Φ↓ = Φ↓ \ Φj ;
b) Let the domain of Φj be Gj and the topological

order be TOP(Gj);
c) For each arc vj → vi (it can be inferred that

vi ∈ H1) in order with respect to TOP(Gj):
i) The unique conditional distribution of vj and

vi in Φj is denoted φj and φi respectively;
ii) Reverse the arc vj → vi by (4) to obtain φ

′
j

and φ
′
i;

iii) Φj = Φj ∪ {φ′
i, φ

′
j} \ {φi, φj}.

d) Φ↓ = Φ↓ ∪ Φj \ φ
′
j , Φ| = Φ| ∪ φ′

j .

together, which has the same spirit as the lazy propagation
[8]. This section presents the common operations in the
junction tree based inference with the lazy strategy and the
operations special for continuous distributions.

A. Potentials and the Operations

A Gaussian potential Φ adopted in our lazy probability
propagation algorithms is a set of Gaussian conditional
distributions. The contraction of the potential is defined to
relate the lazy propagation with the traditional valuation
based inference schemes.

Definition 1: The contraction Υ(Φ) of a Gaussian poten-
tial Φ is the non-negative function given by

Υ(Φ) =
⊗

Φ

where
⊗

is the composition of Gaussian conditional distri-
butions discussed in Section III-A.

Note the operator
⊗

in the definition of contraction
replaces the operator

∏
in Definition 3.4 in [15] to reflect the

non-commutativity of the composition of Gaussian condi-
tional distributions. Two potentials are said to be equivalent
Φ1 � Φ2 if Υ(Φ1) = Υ(Φ2).

The combination of the potentials is defined as the set
union, similar to that in [15]. The combination of two poten-
tials Φ1 and Φ2 is a potential defined as Φ1⊕Φ2 = Φ1∪Φ2.

The division of two potentials Φ1 and Φ2 is required by
the Hugin structure.

Definition 2: In our lazy strategy, the division is defined
only if Φ̃2 ⊆ Φ̃1 where Φ̃1 � Φ1 and Φ̃2 � Φ2. The result
is a potential given by Φ1 
 Φ2 = Φ̃1 \ Φ̃2.

The marginal and complement of a potential is defined
in [18] and calculated as single conditional distributions.
The decomposed form of marginal and complement can be

b c d e c d e f
1
:C

2
:C

( | ) ( | , , )p c d p b c d e ( ) ( | ) ( | , )p f p d f p e f c

(a) junction tree

f

d e

c

d e

c

b

(b) domain graphs

Figure 3. Junction tree potentials and message calculation.

obtained by Algorithm 1. Given a potential Φ with domain
D and head H , the projection Φ↓D′

of Φ to D
′ ⊆ D is

obtained by eliminating the nodes in (D\D′
) ⊆ H , and the

complement Φ|D′
is given by Φ 
 Φ↓D′

.
Consider the Gaussian BN in Fig. 2(a). A junction tree

with the initial clique potentials is shown in Fig. 3(a). The
domain graphs of the clique potentials are given in Fig. 3(b).
The operation to calculate the message from C2 to C1 is
eliminating the node f , which is graphically represented in
Fig. 2(b). This demonstrates how the recursive combination
in [13] and the adoption of elimination trees are avoided by
operating on directed graphs.

B. Continuous Evidence Instantiation

Given a continuous distribution Φ = P (H | T ) and
an item of evidence v = v for the evidence node
v ∈ H . The calculation of the posterior distribution
P ((H \ v) | T,v = v) is referred as evidence instantiation
or evidence insertion. With the moments parametrization, the
evidence v = v can be inserted in Φ only if the following
condition holds:

In the domain graph GΦ, all the arcs directed to the node
v can be reversed.

After reversing these arcs, v would only appear in two
types of conditional distribution. One is the unique potential
φ such that h(φ) = v and t(φ) = ∅, where the instantiation
of v = v is straightforward. The other is a conditional
distribution ψ such that v ∈ t(ψ). Consider inserting v = v
in a conditional distribution ψ = [A,B,Q](H |T ) of the
second type. After evidence instantiation, B is changed by
removing the column Bv corresponding to v, A is modified
as A∗ = A+Bvv, and v is reduced from T .

C. PUSH Operations

In the probabilistic propagation on a junction tree, the
continuous evidence must be inserted everywhere the ev-
idence variable appears and can only be inserted in a
potential satisfying the condition in Section IV-B. When the
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f

c d

a

b

e

Figure 4. A Gaussian BN.

condition is not satisfied, the PUSH operations are required
to create a clique large enough to insert the evidence. The
PUSH operations in this case can be implemented as part
of message passing in the usual junction tree algorithms.
The message passing integrated with the PUSH operations
is carried out on a new junction tree where some cliques are
enlarged by including the evidence variables.

PUSH operations can also be used to calculate a marginal
over a set of variables which are not contained in a single
clique. The traditional junction tree algorithms provide the
marginals over each clique or separator. If a marginal over
the variables not included in a single clique is required, a
clique containing all the variables in question can be created
using PUSH operations after usual message passing.

V. LAZY LS PROPAGATION

We present the lazy propagation schemes aimed at Gaus-
sian BNs in LS, Hugin and SS structure respectively.
Assume we are at the point where we have specified a
Gaussian BN and an associated junction tree T . Also,
each conditional distribution of a node given its parents
is assigned to a clique of the junction tree that contains
its family. The potential ΦC of a clique C is the union
of the conditional distributions assigned to C. ΦC = ∅ if
there is no conditional distribution assigned to C. The joint
potential of the BN is denoted Φ0 =

⊕
C∈C ΦC where C is

the set of the cliques of T . Message calculation, message
passing integrated with evidence incorporation and marginal
calculation involving PUSH operations are described for each
structure. The Gaussian BN in Fig. 4 is a running example.
e and f are evidence variables. One of its junction tree is
given in Fig. 5.

A. Messages

There are two types of messages in the LS struc-
ture, COLLECT-message and DISTRIBUTE-message. Any
clique can be designated as the root of the junction tree.
A clique Ci is allowed to send a COLLECT-message to its
parent clique Cj when it has received COLLECT-messages
from all of its children cliques,

Φ∗
Ci

= Φ|Si

Ci
,Φ∗

Cj
= ΦCj ⊕ Φ↓Si

Ci
, (5)

where Si = Ci ∩ Cj is the separator between Ci and its
parent. A leaf clique can send a COLLECT-message right
away.

When a clique Cj has received a DISTRIBUTE-message
from its parent, it can send DISTRIBUTE-messages to its
children. Take one child clique Ci for example. The clique
potentials keep unchanged, while the separator potential is
created as

ΦSi = (Φ∗
Cj

⊕ ΦSj )
↓Si . (6)

The root Ck starts the distribution procedure after it has
received COLLECT-messages from all the children. Sk and
ΦSk

are both defined as an empty set. The intermediate result
Φ∗
Cj

⊕ ΦSj may be stored separately for clique marginal.

B. Probabilistic Propagation

Algorithm 2 describes the inward pass integrating evi-
dence incorporation.

Algorithm 2 Inward pass in the lazy LS structure
When a clique Ci has received COLLECT-messages from
all of its children cliques, it sends a COLLECT-message to
its parent clique Cj as follows.

1) Denote the set of evidence variables in Ci as E;
2) For each evidence variable v ∈ E

• If v = v can be instantiated in ΦCi

– Insert v = v; E = E \ v;

3) Enlarge Cj to be Cj = Cj ∪ E and Si to be Si =
Si ∪ E. Then send a message as (5).

4) Incorporate the evidence variables in Φ∗
Ci

.

At the end of the inward pass, all the evidence variables
would be instantiated. The updated clique potential is a
complement given by

Φ∗
Ci

= Φ0(Ci\Si)|Si . (7)

The marginal of the joint distribution over a clique is stored
or recalculated as

Φ0↓Ci = ΦSi ⊕ Φ∗
Ci

(8)

The outward pass is irrelevant to the evidence incorporation
and implemented as usual.

The lazy LS propagation in the junction tree of Fig. 5 is
illustrated in Fig. 6. C4 is chosen as the root. The updated
clique potentials and separator potentials are shown in the
figure. φ|e denotes a potential incorporating the evidence
of e. Arrows depict message passing while the one with
dark arrow-head indicates a message passing with PUSH

operation. The evidence variable e is PUSHed from C1 to
C2 and f is PUSHed from C3 to C4 in the inward pass. All
the evidence variables are instantiated in the inward pass. If
choose C3 as the root, only one PUSH operation is required
in the propagation.
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Figure 5. An initialized junction tree for the BN in Fig. 4.
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Figure 6. Lazy LS propagation.

C. Marginal Calculation

To compute a marginal over a group of nodes M in
different cliques after a round of message passing, first form
the smallest connected subtree of the original junction tree
covering M . Let C be the clique of the subtree which is
closest to the root of the original junction tree. Implementing
an inward pass on the subtree employing PUSH operations
to enlarge C to include M. The marginal over the enlarged
C can then be computed using (8) and the required marginal
can be obtained by further marginalization.

VI. LAZY HUGIN PROPAGATION

A. Messages

Each separator potential is initialized as an empty set. Any
clique can be designated as the root. The joint potential is
represented with both the clique potentials and the separator
potentials.

Φ0 =
⊕
C∈C

ΦC 
 (
⊕
S∈S

ΦS) (9)

where S is the set of separators.
When passing a message (flow) from clique Ci to its

neighbor Cj through the separator Sij , the potentials are
updated as

Φ∗
Ci

= ΦCi ,Φ
∗
Sij

= Φ↓Sij

Ci
, (10)

Φ∗
Cj

= ΦCj ⊕ (Φ∗
Sij


ΦSij ) (11)

It can be verified that Φ∗
Cj

Φ∗

Sij
= ΦCj
ΦSij , from which

we can see that the joint potential keeps the clique-separator
representation (9) under message passing.

B. Probabilistic Propagation

The propagation in Hugin architecture is done in an in-
ward pass and an outward pass. Though the flow passing has
the same form as in (10, 11), no division is involved in the
inward pass since the initial separator potentials are empty
sets. When Ci sends a message to Cj in the inward pass,
the separator potential is calculated as ΦSij = Φ↓Sij

Ci
⊆ ΦCi .

In the outward pass, when Cj sends a message to Ci, the
potential of Ci is updated as

Φ∗
Ci

= ΦCi 
 ΦSij ⊕ Φ∗
Sij
. (12)

Algorithm 3 describes the message passing in the Hugin
structure, unifying the inward pass and outward pass. It
should be noted that there involves no PUSH operations
in the outward pass, just as in the LS structure. Actually,
the PUSH operations are the same in the two structures
if employing the same rooted junction tree. However, the
evidence variables may be instantiated in both the inward
pass and the outward pass in the Hugin structure. Figure 7
illustrates the lazy Hugin propagation process in the junction
tree in Fig. 5 with C4 as the root of the junction tree. The
variable f in C3 is instantiated in the outward pass.

Algorithm 3 Message Passing in lazy Hugin structure
1) Denote the set of evidence variables in Ci as E;
2) For each evidence variable v ∈ E

• If v = v can be instantiated in ΦCi

– Insert v = v and then remove v by E = E \v;

3) Cj = Cj ∪E and Si = Si ∪E. Then pass a message
as per (10, 11).

C. Marginal Calculation

At the end of the propagation, a representation similar to
(9) holds for any subtree T ′

,

Φ0↓
⋃

C∈C′ C =
⊕
C∈C′

ΦC 
 (
⊕
S∈S′

ΦS) (13)

where C′
and S ′

is the set of cliques and separators in
T ′

respectively. To calculate a marginal over a group of
nodes M in different cliques, first find the smallest subtree
coveringM , then choose any clique in the subtree as the root
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Figure 7. Lazy Hugin propagation.

and implement an inward pass. Consider passing a message
from Ci to Cj . First enlarge the separator and clique as

Sij = (M ∩ Ci) ∪ Sij , Cj = (M ∩ Ci) ∪ Cj ,

then update potentials as per (10, 11). The query can be
solved from the potential of the root of the subtree after the
inward pass.

VII. LAZY SS PROPAGATION

A. Messages

In the SS structure, the clique potentials do not update as
message passing. The message sent by clique Ci to clique
Cj is defined as

μij = (ΦCi ⊕
⊕

Ck∈(nb(Ci)\Cj)

μki)↓Sij (14)

where nb(Ci) is the set of cliques neighboring Ci in the
junction tree.

B. Probabilistic Propagation

The message passing integrated with evidence incorpora-
tion is given in Algorithm 4. Though the propagation process
can be organized in an inward pass and an outward pass
by designating an arbitrary clique as the root similar to the
LS and Hugin structure, the two messages between any two
neighboring cliques in both directions are the same no matter
which clique acts as the root of the junction tree. Also, PUSH

operations may be implemented in both passes since the
clique potential is not updated with message passing and
an evidence variable may not be instantiated until a clique
receiving all the messages from its neighbors. This is a
major difference with the other two inference structures. See
the propagation process shown in Fig. 8 where three PUSH

operations are involved. It is impossible to insert evidence
only in the collect pass, as described in [15].

C. Marginal Calculation

After a round of message passing, the marginal over a
clique is calculated as

Φ0↓Ci = ΦCi ⊕
⊕

Ck∈nb(Ci)

μki (15)

wherein evidence can be inserted.

Algorithm 4 Message passing in lazy SS structure
When a clique Ci has received messages from all its
neighbors except Cj , it sends a message to Cj as follows.

1) Denote the set of evidence variables in Ci as E;
2) For each evidence variable v ∈ E

• If v = v can be instantiated in ΦCi ⊕⊕
Ck∈(nb(Ci)\Cj)

μki

– Insert v = v and then remove v by E = E \v;

3) Cj = Cj∪E and Sij = Sij ∪E. Then pass a message
as per (14).

To calculate the marginal over a set of nodes in different
cliques, we introduce separator potential as

ΦSij = μij ⊕ μji, (16)

which is the marginal over the separator ΦSij = Φ0↓Sij .
Then the joint potential can be expressed in the clique-
separator marginal form as in (9) in the Hugin structure.
The following computations are the same.

VIII. ALGORITHM ANALYSIS

A. Comparison of the Three Algorithms

Assume an inference task is implemented using lazy LS,
lazy Hugin and lazy SS algorithms on the same un-rooted
junction tree. The computation efficiency of lazy LS and
lazy Hugin algorithm is affected by the choice of the root
of the junction tree, while the computation efficiency of lazy
SS algorithm is independent of which clique is chosen as the
root of the junction tree. The number of PUSH operations
involved in evidence incorporation in lazy SS algorithm are
never less than that in the other two algorithms, thus lazy
SS algorithm is less efficient than the other two algorithms.

B. Comparison with other Architectures

This section describes briefly the main differences be-
tween the proposed architectures and the architectures in
[13], [14], [15] applied for probability propagation in Gaus-
sian Bayesian networks.

The AR operation in our lazy algorithms avoids the recur-
sive combination in the architecture of Lauritzen and Jensen
[13]. The recursive combination is accomplished by trial
and error and could be inefficient. In the lazy algorithms,
however, the combination (not implemented explicitly) order
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Figure 8. Lazy SS propagation.

can be determined utilizing the directed graph information
by keeping the decomposed form potentials.

The structure proposed by Cowell [14] has the same
spirit as the lazy algorithms; the potentials are remained in
decomposed form in an elimination tree. Yet an elimination
tree offers less degrees of freedom with respect to the
elimination order when computing messages.

Both the architectures of Lauritzen and Jensen [13] and
Cowell [14] adopt the LS structure and the junction tree is
initialized to a set-chain form where the clique potentials are
conditioned on parent separator by collecting messages to
the root before any evidence is entered and propagated. Our
algorithms are devised in the LS, Hugin and SS structures. A
single round of message passing is enough for the inference;
the evidence can be incorporated in parallel.

The work of Madsen [15] is most close to our lazy SS
algorithm. The statements in Section 3.7 in [15] imply that
the evidence instantiation is accomplished in a COLLECT

procedure. The fact is, however, that the evidence insertion
is involved in both COLLECT and DISTRIBUTE procedures
in general. See the example in Section VII.

IX. CONCLUSIONS

This paper devises lazy LS, lazy Hugin and lazy SS
algorithms for the probability propagation in Gaussian BNs
by employing the AR method in the message calculation of
traditional junction tree algorithms. In the three algorithms,
the moments parametrization allows inference in Gaussian
BNs with model constraints. The evidence incorporation and
the probability propagation are integrated in a single round
of message passing. The computational efficiency of lazy
SS algorithm does not outperform the other two algorithms.
The research improves both the conceptual understanding of
and the performance of inference in Gaussian BNs.

We plan to evaluate empirically the proposed algorithms
and compare them with some existent schemes, like that in
[13], through a wide range of Gaussian BNs in the future.
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