
Decentralised Solutions to the Cooperative Multi-Platform
Navigation Problem

Mu Huaa,b, Tim Baileya, Paul Thompsona, Hugh Durrant-Whytea

aAustralian Centre for Field Robotics, University of Sydney, NSW 2006, Australia
bAutomatic Control Department, National University of Defense Technology, Hunan 410073,

P.R.China

Abstract

The problem of cooperative navigation for a team of platforms employing inter-platform
observations is investigated. A decentralised solution in the framework of an information
filter with delayed states is presented. In this structure, each platform first estimates
its motion using only local sensor data, then shares its information across the network
using an algorithm that employs a distributed Cholesky modification. The decentralised
solution permits each platform to act in the same modular manner, providing robustness
to individual platform failure. The solution yields linear minimum mean-square error
estimation performance. As such the estimates generated are optimal ; it generates ex-
actly the same estimates as would a conventional extended Kalman filter, if given the
same data. Efficient sparse implementation is accomplished without resorting to approx-
imate methods. Simulation experiments employing a team of ten mobile platforms are
described and used to evaluate the decentralised estimation performance. The robust-
ness, flexibility and cost of the decentralised approach are analyzed and compared to an
existing distributed solution.

Key words: Cooperative navigation, decentralised data fusion, delayed states,
information-form Gaussian

1. Introduction

Navigation, the ability to determine position, velocity and attitude, is a fundamental
capability of any mobile platform. Current navigation schema combine measurements
from internal proprioceptive sensors, that monitor the motion of the platform, with land-
mark information collected by exteroceptive sensors that sense the external environment
of the platform. However, where a team of platforms is required to accomplish a task,
in applications such as search and rescue for example, the navigation solution for each
platform is not independent if the same external landmarks are used by different plat-
forms for self-localization, or if inter-platform observations are made. In these cases,
navigation of the platform team needs to be treated as a whole, that is, cooperative (co-
ordinated,or collaborative) navigation is required. Cooperative navigation of a platform
team has some fundamental advantages over independent navigation of each platform
[1]. For a homogeneous platform team, better estimates of external landmarks can be
achieved by integrating measurements made by different platforms at many locations
which can, in turn, improve the individual platforms navigation accuracy. For a het-
erogeneous team of platforms, a platform carrying low-precision navigation sensors can
make use of high-precision navigation sensors hosted on other platforms to improve its
navigation performance. Equally, a platform which can not accomplish a navigation

Preprint submitted to IEEE Transactions on Aerospace and Electronic Systems July 29, 2010

task by itself, due to limits in sensing or environments, can be ‘navigation enabled’ by
cooperation with other platforms.

This paper introduces a decentralised solution to the general cooperative multi-
platform navigation problem in the framework of the information filter [2] with delayed
states. The delayed states are retained to capture historical dependencies or correla-
tions between estimates, and to permit fusion of data involving multiple platforms. The
decentralised structure proposed in this paper integrates distributed computing [3] and
makes use of the distributed Cholesky modification for delayed states. In the Decen-
tralised Data Fusion (DDF) framework, there is no central data fusion center and the
platform team is able to reorganize itself when any single platform fails. The presented
algorithm is an optimal estimator. It makes no approximations apart from the usual
model linearisations and, once all of the available information has propagated through
the system, will generate the same estimates as a centralised estimator, such as an EKF.

Simulation experiments employing a group of ten mobile platforms are described.
These verify the proposed solution and evaluates its performance. The results demon-
strate that the solution improves the navigation accuracy for platform team after integrat-
ing inter-platform observations. Comparing the decentralised solution with an existing
distributed solution, the former has the advantage in terms of robustness while the latter
has the advantage in terms of communication delay and computational cost.

The paper is organized as follows. Section 2 revisits previous work on cooperative
localization. Section 3 formulates the cooperative navigation problem in the framework
of the information filter with delayed states, and presents the operations for incremental
modification of Cholesky factors. Section 4 presents the new decentralised algorithm for
cooperative navigation. Section 5 provides results of the simulation experiments. Section
6 analyzes the performance of the decentralised approach comparing with a distributed
solution. Conclusions and extensions are given in Section 7.

2. Related Work

Probabilistic approaches to the decentralised multi-platform navigation problem have
been explored in a number of previous publications [4, 5, 6, 7]. While the methods de-
scribed in [5, 6] are said to be ‘distributed’, we classify them here as decentralised. The
difference between a distributed structure and a decentralised structure is that the former
has a fusion center while the latter does not. In [5] a probabilistic algorithm for collab-
orative mobile robot localization is developed. The decentralised structure is realized
by exploiting an approximation that removes interdependencies between robots. While
the assumption makes the algorithm computationally tractable, it results in an inconsis-
tent (over confident) solution. Evaluation of the algorithm is performed using only two
robots. A method combining maximum likelihood estimation and distributed numeri-
cal optimization is presented in [6]. This approach provides estimates of relative, rather
than global, platform localization. The paper argues (without proof) that the distributed
optimization algorithm provides a solution equal to that obtained by centralised opti-
mization. Experiments using a team of four mobile robots are presented. A decentralised
Kalman filter framework, called ‘collective localization’ is proposed in [4]. A centralised
Kalman filter is distributed as multiple Kalman filters each operating on one platform in
the team. The key element of this method is to distribute the cross-correlation terms of
the joint covariance matrix on different platforms. The experiments employ a group of
three mobile robots. Although this method can be applied to a larger group in principle,
the treatment of the covariance matrix (which is dense since the robots are correlated to
each other) will not scale.

2

While the information filter and the Kalman filter are mathematically equivalent, they
have different complexity characteristics for time and observation update steps. These
two (equivalent) filters are thus suitable for different problems. The information filter
(or extended information filter) is referred to in [4] and it’s argued that ‘For the case
of distributed multirobot localization, the Kalman filter performs significantly better’.
The same opinion is held in [7]. Two problems in the information filter applied to the
cooperative navigation are mentioned to support these opinions [4]. The first problem
is that large matrix inversion is required during each propagation step. The second
problem is that the state recovery needed at every step involves the inverse of the whole
information matrix.1

To address these two problems a decentralised structure in the framework of the in-
formation filter is proposed. The matrix inversion is avoided in the time propagation
step by introducing delayed states into the information filter. With delayed states, the
prediction becomes state augmentation which does not require the inversion of the in-
formation matrix. The state recovery is realized incrementally and only a submatrix
instead of the complete information matrix is involved. The operation is implemented in
constant time. Comparison with the treatment of the correlations in a dense covariance
matrix shows much reduced computational complexity and better scalability.

The primary influence on this work is from recent research in Simultaneous Localiza-
tion and Mapping (SLAM) [8, 9, 10, 11]. This literature demonstrates the strengths of
the information filter in multi-sensor data fusion: State augmentation and observation
updates are both constant time operations, fusion of information from different sensors
is additive, and the key concept of delayed states can be introduced in a natural manner.
Delayed states are used for landmark initialisation [12, 13, 14] in situations when data
must be accumulated over a period of time before the landmark becomes fully observ-
able. In [10], a full-smoothing approach is adopted retaining all the localization states
of the platform over time. The introduction of delayed states in the work described in
this paper avoids the need to compute the inverse information matrix in the time-update
(prediction) step of the navigation filter, manages historical dependencies and permits
fusion of inter-platform observations. In this form, Cholesky modification can be used
as an efficient way to recover state mean and covariance information as proposed in [10]
and implemented in an application of large scale view-based SLAM [15].

An approach to solving the cooperative navigation problem using the information
filter framework with delayed states is described in [16]. This demonstrates the advan-
tages of the additivity property of the observation update step of the information filter
and how delayed states can be used to fuse inter-platform observations. The structure
described is ego-centric in which every platform acts as a fusion centre, duplicating data
fusion rather than being fully decentralised.

Another significant influence on the work described in this paper is distributed com-
puting methods [3] and parallel computing methods [17]. It is noted, however, that
distributed computing can only contribute general theoretical foundations and that fur-
ther progress needs to be made concerning the application of such methods to a dynamic
problem [18]. The introduction of a distributed Cholesky modification provides a solution
to the multi-platform navigation problem in a decentralised structure.

1In [4] a third problem cited is that the covariance matrix may lose rank in some cases, e.g., when
two platforms stand still and keep measuring range between themselves. In this case, however, both the
information and Kalman filters will fail.

3

3. Problem Formulation and Representation

In this section the cooperative multi-platform navigation problem is formulated, the
properties of information filter with delayed states are introduced and the operations for
incremental Cholesky modification are provided.

3.1. Problem Statement

The cooperative multi-platform navigation may be stated as follows:

1. A team of N mobile platforms move in an environment. Each platform can move
independently according to a local dynamic model.

2. Each platform is equipped with dead-reckoning sensors to measure self-motion;
odometry or inertial sensors for example.

3. Some platforms may also be equipped with external sensors, such as GPS, to correct
dead-reckoning estimates. These sensors provide observations involving only one
platform.

4. Each platform also carries sensors that provide inter-platform measurements such
as range or bearing to each other or to a common landmark. This type of of sensor
provides observations involving two or more platforms in the team.

5. All platforms are equipped with communication devices allowing team members to
exchange information with each other.

The cooperative navigation task requires each platform to estimate its own state (po-
sition, orientation, velocity etc) making use of both its own observations and those obser-
vations made by and of other platforms. If required, a platform can maintain estimates
of the states of the other members in the team. The cooperative navigation problem
is complex as the estimated states of the team members are correlated through mea-
surements of common states. Conversely, these correlations make cooperative navigation
valuable in improving navigation accuracy for all team members and enabling platforms
without sufficient sensing to navigate using information from other team members.

In this work, each platform is equipped with odometry and a ranging sensor. Some
have independent GPS-like position sensors, other do not. The platforms are identified
by capitals A,B,C, · · · .

3.2. Information Augmentation and Fusion

Appendix A defines the equivalent covariance-form NS(x; x̂,P) (Equation A-1) and
information-form NI(x; ŷ,Y) (Equation A-2) parametric forms for Gaussians. The infor-
mation matrix Y and covariance matrix P are related as Y = P−1 and the information
vector ŷ and the state mean x̂ are related as ŷ = P−1x̂. Appendix A also shows that
information fusion is simply addition in the information form and marginalisation (pre-
diction) requires inversion of the information matrix. With these results, we describe the
process of augmentation and observation fusion in information form for the navigation
problem.

The platform state at time k is denoted xk. The state of the platform is assumed to
evolve according to the motion equation

xk+1 = f(xk) + q, q ∼ NS(q;0,Q) = NI(q;0,Q−1).

State Augmentation: A joint state-vector x = [xT
k−1,xk

T]T comprising the platform
states at time k−1 and k. This joint state-vector is assumed Gaussian and parameterised
in information form as NI(x; ŷ,Y) with

ŷ =

[
ŷk−1
ŷk

]
, Y =

[
Yk−1,k−1 Yk−1,k
YT

k−1,k Yk,k

]
. (1)

4

An augmented state vector xa is now constructed by joining the state xk+1 to the
joint-state x:

xT
a =

[
xT xT

k+1

]
=
[
xT
k−1 xT

k xT
k+1

]
=
[
xT
k−1 xT

k (f(xk) + q)T
]

(2)

From Equations (A-20, A-21), the information parameters for the augmented state vector
are

ŷa =

 ŷk−1
ŷk − FT

kQ
−1[f(x̂k)− Fkx̂k]

Q−1[f(x̂k)− Fkx̂k]

 , (3)

Ya =

 Yk−1,k−1 Yk−1,k 0

YT
k−1,k Yk,k + Fk

TQ−1Fk −FT
kQ
−1

0 −Q−1Fk Q−1

 , (4)

where the non-linear motion model has been appropriately linearised with Fk = ∂f
∂xk

∣∣∣
x̂k

.

There are two important points to note about these expressions for the augmented
information parameters. First, there is no requirement to invert an information ma-
trix. Second, the cross-information between xk+1 and xk−1 is zero. Indeed, the cross-
information between xk+1 and all states xj , where j 6= k, k+ 2, is zero and thus the joint
information matrix is block-diagonal and sparse in general. These two points explain
why the augmented information form is potentially computationally efficient.

The sub-states xk−1 can be removed from the joint estimation x = [xT
k−1,xk

T]T by
marginalisation using the following information-form expressions,

ỹk = ŷk −YT
k−1,kY

−1
k−1,k−1ŷk−1, (5)

Ỹk,k = Yk,k −YT
k−1,kY

−1
k−1,k−1Yk−1,k. (6)

Note, marginalisation will result in the information matrix losing its sparseness property
and therefore is not undertaken unless required.
Observation Updates for Individual Platforms: At time k the platform is assumed
to make measurements according to the measurement equation

zk = h(xk) + r, r ∼ NS(r;0,R) = NI(r;0,R−1).

In information form, fusion (a product of probability densities) is simply addition, so the
updated information vector ŷ+

k and matrix Y+
k are given by

ŷ+
k =

[
ŷk−1

ŷk + ik

]
, (7)

Y+
k =

[
Yk−1,k−1 Yk−1,k
Yk−1,k

T Yk,k + Ik

]
, (8)

where the observation information vector and matrix are given by

ik = HTR−1 (zk − h(x̂k) + Hx̂k) , Ik = HTR−1H

and where H = ∂h
∂xk

∣∣∣
x̂k

.

The important point to note here is that fusion in the augmented information state
affects only the sub-vector associated with the current time. This means that the fusion

5

operation is sparse and computationally trivial. This should be compared to the equiv-
alent operation for a covariance-based parameterisation (a Kalman filter) which would
require the calculation of a gain matrix and which results in a non-sparse update.
Observation Updates for Several Platforms: Consider now a state vector x com-
prising sub-state vectors of three platforms A, B and C, [xT

A,x
T
B ,x

T
C]T (the time sub-

script k is omitted here to aid understanding of the essential update process). Consider
an observation taken between platforms A and B; a relative range for example or an
observation of a common landmark. The observation model is given by,

z = h (xA,xB) + r r ∼ NS(r;0,R) = NI(r;0,R−1). (9)

The updated information vector and matrix are given by

ŷ+
k =

 ŷA + iA
ŷB + iB

ŷC

 , (10)

Y+
k =

 YAA + IAA YAB + IAB YAC

YT
AB + ITAB YBB + IBB YBC

YT
AC YT

BC YCC

 , (11)

where the observation information vector and matrix are given by

ii = HT
i R
−1 (z− h(x̂i, x̂j) + Hix̂i + Hjx̂j) , Iij = HT

i R
−1Hj

and where Hi = ∂h
∂xi

∣∣∣
(x̂i,x̂j)

.

As before, the information update only affects those components of the information
vector and information matrix directly related to the observation; regardless of how the
states are correlated. This should be contrasted to the covariance-form update in which
all observable states would be updated by an observation through the estimated cross
correlation. The advantage of the information parameterisation is again clear. The
update required to platforms from a common observation is local only to those platforms
and need not be propagated to other platforms in the team at observation time. This
ensures that both computation and communication are minimised.

3.3. Graphical Model Representation

To assist in the exposition in Section 4, we exploit the equivalence of the information
form Gaussian and the graphical model for Markov random fields [19, 16]. The vertices
of a Markov random field represent the diagonal entries of the information matrix and
the edges (or links) represent the off-diagonal entries, as shown in Figure 1. If there is no
link between two vertices, the associated off-diagonal terms are zeros. A vertex may also
represent a group of states, in which case it corresponds to a block-diagonal component
of the information matrix, and its links correspond to a block of off-diagonal terms. The
vertices also represent the terms of the information vector. Thus, changing the value of a
vertex is equivalent to changing the value of a (block-) diagonal entry of the information
matrix, and the associated terms of the information vector, and changing the value of
a link is equivalent to changing the value of the associated off-diagonal entries of the
information matrix.

3.4. Estimation with Cholesky Factors

The algorithms for decentralised estimation and state moment recovery presented in
Section 4 are implemented using a Cholesky factored form of the information matrix. The
essential operations for manipulating the joint state information and recovering partial
estimates of the mean and covariance are described below.

6

(a) Information matrix (b) Graphical model

Figure 1: An example information matrix (a), with non-zero entries marked in black, and
its corresponding graphical model (b). The vertices in (b) are also representative of the
information vector.

3.4.1. Block-based Cholesky Modification

Consider a system {ŷ,Y} which is partitioned in 4× 4 blocks. The Cholesky factor
of Y has the following form,

L =

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44

where each Lii(i = 1, 2, 3, 4) is itself a lower triangular matrix. The following notations
are used. Li∗ is the ith row block; L∗j is the jth column block; the size of Lij is ri × cj ,
where ri is the number of rows and cj is the number of columns. Similar notations are
used for Y.

The block-based up-looking Cholesky factorization for Y4∗ is accomplished in two
steps [17]. The off-diagonal blocks are the solution of a triangular system L11

L21 L22

L31 L32 L33

 LT
41

LT
42

LT
43

 =

 YT
41

YT
42

YT
43

 . (12)

The diagonal block is computed from a Cholesky factorization

L44L
T
44 = Y44 −

[
L41 L42 L43

] [
L41 L42 L43

]T
. (13)

If the modification of L starts from L∗3, then only rows 3 and 4 are affected, where
the modified part for L3∗ is calculated from a Cholesky factorization

L33L
T
33 = Y33 −

[
L31 L32

] [
L31 L32

]T
, (14)

and the modification for L4∗ is

L33L
T
43 = YT

43 −
[
L31 L32

] [
L41 L42

]T
L44L

T
44 = Y44 −

[
L41 L42 L43

] [
L41 L42 L43

]T
. (15)

7

Property 1. From (14, 15) it is apparent that if the changed part of L starts from L∗j ,
then rows Lk∗, where k < j, do not appear in the modification calculations. �

It can be derived from (12) that the leftmost non-zero element of Li∗ shows up at the
same column of the leftmost non-zero element of Yi∗. If Y41 = 0, then L41 = 0, and the
remainder of L4∗ is calculated as[

L22

L32 L33

] [
LT
42

LT
43

]
=

[
YT

42

YT
43

]
L44L

T
44 = Y44 −

[
L42 L43

] [
L42 L43

]T
. (16)

The computational cost for this calculation is O(r4(r22 + r23)) + O(r3r4c2) + O(r24(c2 +
c3)) + O(c34).

Property 2. Equation (16) shows that if the leftmost nonzero element of Yi∗ appears at
position Yij , where 1 < j < i, then L∗k, for k < j, are not needed in the calculation of
Li∗. �

Furthermore, when L41 = 0 and L42 is unchanged, the modification of L4∗ simplifies to

L33L
T
43 = YT

43 − L32L
T
42

L44L
T
44 = Y44 −

[
L42 L43

] [
L42 L43

]T
. (17)

The computational cost in this case is O(r23r4) + O(r3r4c2) + O(r24(c2 + c3)) + O(c34).

3.4.2. Partial State Mean Recovery Algorithm

Given L, the complete state mean vector x̂ can be recovered in two steps: forward
substitution and backward substitution.

Lf̂ = ŷ, (18)

LT x̂ = f̂ , (19)

where f̂ is the solution of the forward substitution.
Assume the system {ŷ,Y} is partitioned into three blocks L11

L21 L22

L31 L32 L33

 f̂1
f̂2
f̂3

 =

 ŷ1

ŷ2

ŷ3

 . (20)

If a modification is performed on the last block {ŷ+
3 ,L

+
33} only, the change in forward

substitution and subsequent recovery of x̂+
3 is computed as

L+
33f̂

+
3 = ŷ+

3 − L31f̂1 − L32f̂2, (21)

L+T
33 x̂+

3 = f̂+3 . (22)

Considering the sparseness of L, say L31 = 0, (21) simplifies to

L+
33f̂

+
3 = ŷ+

3 − L32f̂2. (23)

In this case, only the subvector f̂2 is needed, where the length of f̂2 is c2, and so the number
of elements in L involved in partial mean recovery is constant; the operation can be
implemented in constant time. The computational cost involved in (23) is O(r3c2)+O(c23)
and in (22) is O(c23).

8

Figure 2: Platform A augments a Markov chain of its state history every time-step,
fusing odometry and GPS. Each vertex Ak of the chain represents the platform’s
instantaneous state xk at time-step k.

3.4.3. Partial State Covariance Recovery Algorithm

While the information matrix for the cooperative navigation system is sparse, the
corresponding covariance matrix P is dense. To recover the whole P is computationally
expensive and not necessary. What are needed in practical applications are the diagonal
or block-diagonal elements. Computing the elements of P (whose size is n × n) only at
the locations coincident with the non-zeros of L constitutes a ‘sparse inverse’, which can
be calculated as follows [20]

pjj =

l−1jj −
n∑

k=j+1,lkj 6=0

pkj lkj

 l−1jj ,

pij = −

 i∑
k=j+1,lkj 6=0

piklkj +

n∑
k=i+1,lkj 6=0

pkilkj

 l−1jj

(j = 1, 2, · · · , n, j < i, lij 6= 0). (24)

Starting from the bottom-right element of L, individual elements of the sparse inverse
can be calculated recursively from right to left, from bottom to top. To recover elements
in the submatrix Pm:n,m:n, where (1 6 m < n), only the submatrix Lm:n,m:n is involved.
If Lm:n,m:n has k nonzeros, the cost of recovering the sparse inverse is O(k3), and so, for
constant k, partial covariance recovery is a constant time operation.

4. A Decentralised Solution to Cooperative Navigation

This section presents a particular solution to the cooperative navigation problem, and
is the key contribution of this paper. There are essentially four parts to this algorithm.
The first is local information assimilation, where each platform computes a Markov chain
estimate of its own state history in information form. The second is maintaining the joint
state of all platforms in Cholesky form; the full state history is never located on any one
platform, but is distributed across the network. Third, any given platform can compute
optimal mean and covariance estimates of recent states. And fourth, old (obsolete) states
are deleted to limit storage and communication costs.

4.1. Local State Estimation

Each platform maintains an estimate of its own state given all available local in-
formation. Motion information from odometry and position information from onboard
GPS are fused to form a Markov chain of the platform’s time history [xT

A1, . . . ,x
T
Ak]T , as

shown in Figure 2, where each xAk denotes the instantaneous platform state (position,
velocity, etc.) at time k. This state for platform A is represented in information form as
{ŷA,YA}, where YA is a sparse band-diagonal matrix.

9

(a) Before (b) After

Figure 3: The graphical model for platform A before and after the augmentation by motion
information from time 2 to time 3. The augmentation operation alters the value of vertex A2

(shaded), and adds a new link and vertex (dashed).

Figure 4: There were no range measurements taken by or of platform A at timesteps
2 and 4. These obsolete states are removed by marginalisation.

4.1.1. Position and Motion Assimilation

Fusion of GPS-like position information is trivial, since this information affects only
the vertex (i.e., the block-diagonal entries of the information matrix and associated terms
of the information vector) of the instant when the measurement was taken. Thus, if
platform A obtains a GPS measurement at time 2, it updates only vertex A2 according
to observation model z = hgps(xA2) and the update equations (7, 8).

The assimilation of motion information (such as odometry) involves the Markov model
xAk+1 = f(xAk) and the augmentation operations of (3, 4). Augmentation extends the
state-space by creating a new vertex and linking it to the previous end-state, as shown
in Figure 3. The operation also changes the value of the existing vertex to which the
new link connects. Both the new and old values of the existing vertex are stored, as
both are required to facilitate calculations with and without augmentation information,
as discussed in Section 4.3.2 (see especially Figure 12).

4.1.2. Removal of Irrelevant States

For the task of cooperative navigation, the key purpose of retaining historical states
is to permit fusion of range measurements between platforms. A platform must retain a
position state for every moment when either it observes, or is observed by, another plat-
form. Conversely, any platform states that do not have an associated range measurement
are obsolete and can be removed by the marginalisation equations (5, 6). The remaining
states still form a Markov chain, as shown in Figure 4.

4.1.3. Range Fusion

When platform A observes the range to platform B at time k, it communicates to
platform B the range measurement zk and an estimate of its instantaneous position x̂Ak.

Figure 5: When platform A observes the range to platform B, there is an exchange
between the two so that each knows {x̂Ak, x̂Bk, zk}.

10

Figure 6: The content of the vertices and edges of a local state graph, including
unconnected links to other platforms.

On receiving this information, platform B replies with an estimate of its instantaneous
position x̂Bk at that time-step, as shown in Figure 5. This information allows both
platforms to compute a range observation update with model z = hr (xAk,xBk) as per
(10, 11).

However, range fusion is not performed as a conventional information-form update,
since neither platform retains information of the other platform. Each platform is effec-
tively performing half of the update, and does not compute or store the information for
the other state. Thus, platform A will store just

ŷ+
Ak = ŷAk + HT

AR
−1(zk − h(x̂Ak, x̂Bk) + HAx̂Ak + HBx̂Bk),

Y+
Ak =

[
YAA + HT

AR
−1HA, YAB + HT

AR
−1HB

]
,

while platform B stores the other half of the update

ŷ+
Bk = ŷBk + HT

BR
−1(zk − h(x̂Ak, x̂Bk) + HAx̂Ak + HBx̂Bk),

Y+
Bk =

[
YT

AB + HT
BR
−1HA, YBB + HT

BR
−1HB

]
.

These ‘half estimates’ linking two platforms are not trivial to realise with the usual
matrix-like data structures. The local estimation process is easier to think about, and to
implement, in terms of a graph data-structure that manages both the information-form
data and bookkeeping for connections within and between platforms. For the example in
Figure 6 each vertex k holds {k, ŷAk,YAkAk} (i.e., records for time, information vector,
and information matrix block-diagonal), and each edge kj holds {Ak, Xj ,YAkXj} (i.e.,
platform IDs, and information matrix off-diagonal terms). With this data-structure, the
information is ready to slot into the correct location of the full (all platforms) joint state
vector, as discussed below.

4.2. Determining Joint State Order

When the joint state of all platforms is depicted as a graph (see Figure 7), the links
between vertices of the same platform are formed from motion information, and the
links between different platforms are formed by range measurements. This graphical
representation is sufficient for the information form estimate {ŷ,Y}, since the vertices
and edges can directly represent the values of the information vector and matrix, and
these values are not affected by the order of the elements in the state vector. However,
for the Cholesky factor L of the information matrix, the order of the state vector does
affect the value of its elements, so a graphical representation is not sufficient. We need a
specific state order.

For decentralised estimation all platforms must agree on a single common state or-
dering. This order may be arbitrary, in principle, but, to simplify consensus between

11

Figure 7: Joint historical state for three platforms A, B and C up to time-step 6.
The horizontal links are formed by motion information and the vertical links by
range information.

Figure 8: The information matrix for the graph in Figure 7 with the state ordering
defined in (25).

12

Figure 9: The Cholesky factor of the matrix in Figure 8. The left-most non-zero
term of each row in Y determines the maximum possible fill-in for that row in L.
This gives an upper bound to the cost of Cholesky modification, as described in
Section 4.3.

platforms, a predetermined ordering is used here: states are arranged in time-step or-
der and states with the same time-stamp are arranged in order of platform ID. For the
example in Figure 7, the state vector is ordered as

{A1, C1, B2, C2, A3, B3, A5, C5, A6, B6} . (25)

Given this ordering, the joint information matrix looks like Figure 8 and its Cholesky
factor matrix is as in Figure 9. Notice the fill-in pattern in L; new non-zero entries only
appear to the right of the left-most non-zero term in the corresponding row of Y, as per
(16) in Section 3.4.1.

State order determination is accomplished as follows. When a platform makes a
range measurement at time k, it knows that the instantaneous states of both platforms
must appear in the joint state vector. Therefore, it broadcasts a message to all other
platforms with the platform identifiers and measurement time-stamp (e.g., {A,B, k}).
This information is sufficient for all platforms to construct (25) based on the ordering
rule.

Definition. The state order sequence, as e.g. in (25), is called the ‘augmentation
queue ’ because it determines the sequence in which platforms incrementally augment
the joint state vector. �

4.3. Distributing the Joint State

The essential process of building and distributing the joint state is quite simple, but
is complicated by two conflicting goals: (i) sequential online construction, and (ii) the
need to resolve moments. These complications arise from the existence of ‘unresolved
links’, formed by platform motion and range data.

13

Figure 10: Joint state computation for the first six elements of (25). Note, each Li∗
is also accompanied by a ŷi.

4.3.1. The Essential Process

Operating in the order defined by the augmentation queue, each platform contributes
a new state to the joint state vector; adding a new set of elements to ŷ and a new block-
row to L. The basic concept is shown in Figure 10 for the ordering in (25). Platform
A computes {ŷ1,L1∗} and sends it to platform C. Platform C computes {ŷ2,L2∗} and
sends {ŷ1:2,L1:2,∗} to platform B. In turn, each platform computes another level of the
state vector and forwards it, and all preceding information, to the next platform in the
queue. Thus, the information is cumulative, with the i-th platform in the queue holding
{ŷ1:i,L1:i,∗}. (As shown in Figure 10, not all information needs to be communicated each
time, since the receiving platform might already know some of the past information.)

Each {ŷi,Li∗} is produced by the i-th platform to appear in the augmentation queue,
and is generated from its local information. For example, at step i = 4, platform C sets
ŷi = ŷC2 and Yi∗ = YC2,∗.

2 Given Yi∗ and all the previous Cholesky factor rows
L1:i−1,∗, the new block-row Li,∗ is calculated as

L1:i−1,1:i−1L
T
i,1:i−1 = YT

i,1:i−1 (26)

Li,iL
T
i,i = Yi,i − Li,1:i−1L

T
i,1:i−1 (27)

Once a platform has {ŷ1:i,L1:i,∗}, it is straightforward for it to recover moments (i.e.,
mean and covariance estimates) for all states according to (18–24). The caveat is that
the local estimates used to generate the joint state must have all their links resolved;
it is not possible to compute moments when there are unresolved links. This issue is
discussed in the next section.

4.3.2. Augmentation and Link Resolution

Consider the two graphs in Figure 11, in particular state C2, which is the 4-th element
in the augmentation queue. Given information up to time-step 3, see Figure 11(a), the
state C2 is linked to C1 and B2 only, both of which appear earlier in the augmentation
queue, so that the block-row Y4∗ corresponding to C2 is as shown in Figure 12(a).3

This row has resolved links, since its non-zero terms are all connected to preceding rows.
Furthermore, for the graph in Figure 11(a), once the block-row for B3 has been processed,
as in Figure 10, all rows Y1:6,∗ have their links resolved, and so platform B can compute
the moments of all six states from L1:6,∗.

2For Yi∗ there is a trivial adjustment to place the non-zero elements of YC2,∗ in the correct positions
for the joint state vector, as shown in row 4 of Figure 8; no values change, just locations.

3Note, the zeros in Figure 12 are just for pictorial purposes. In practice, using a sparse representation,
only the non-zero terms of each Yi∗ are stored; zero terms are irrelevant.

14

(a) (b)

Figure 11: The joint state given all information up to time-steps (a) 3 and (b) 5. The
augmentation steps in (b) add new links and vertices (dashed) and alter the value of connecting
vertices (shaded).

(a) Links for Figure 11(a)

(b) Links for Figure 11(b)

Figure 12: Row 4 of Y for the graphs in Figure 11. The grey shaded squares indicate the
values that have changed between (a) and (b) due to augmentation from C2 to C5.

15

Definition. Row i is said to have ‘link resolution ’ once row j, corresponding to the
rightmost non-zero term in row i, has been added to the joint information matrix. �

Unresolved links occur when a row has an off-diagonal term linking it to a later row
in the augmentation queue. Given information up to time-step 5, there is a new link
connecting C2 to C5 as shown in Figure 11(b), and the block-row Y4∗ now appears as in
Figure 12(b). The rightmost non-zero term is in the 8-th column, connecting row 4 to
row 8. Thus, link resolution for the revised row 4 is not achieved until row 8 is processed.

Links due to range measurements are always resolved once all platforms with the same
time-stamp have been processed, and so are not an issue. Links due to augmentation,
however, are a problem because the links never resolve; each row is resolved by a row
that itself has an unresolved link. Therefore, to facilitate both augmentation and moment
recovery, it is necessary to have two versions of each Yi∗. One without augmentation
links, for computing moments as in Figure 12(a), and one with augmentation links, for
ongoing state construction as in Figure 12(b).

From (26) it can be seen that each new Li∗ is a function of the preceding L1:i−1,∗,
and so any variation in a single Yi∗ affects all subsequent rows of the Cholesky factor.
Therefore, it is not enough to just have two versions of each Yi∗. There needs to be
several versions of Li∗; one that contains all augmentation information for ongoing state
construction, and a series of variant Li∗ rows, generated from Yi∗ rows with resolved
links, for recovery of selected moments. Computation of the these variant Cholesky factor
rows requires a retroactive modification strategy, as described below.

4.3.3. Retroactive State Modification

For this discussion, let row i be the location of the old connecting state (e.g., row 4
for C2 in the above example) and row j the new augmented state (e.g., row 8 for C5).

Retroactive augmentation. When the i-th element of the augmentation queue is first
processed, and Li∗ is added to the joint state, it is computed with a Yi∗ that has
resolved links (as in Figure 12(a), i.e., no links to row j). This means that L1:i,∗ is
suitable for moment recovery. For each new augmentation j, processing is revised from
the position of the connecting state i in the augmentation queue. The platform first
alters Yi∗ with the new link information, as in Figure 12(b), then jumps back to the i-th
position in the queue. All elements i through j are reprocessed, recomputing Li:j,∗. Since
the altered Yi∗ is resolved at row j, once again L1:j,∗ is suitable for moment recovery.
The problem with this strategy is that cycling back to the position of the connecting
state, and repeating the sequence of computation and inter-platform communications,
for each new augmentation is expensive.

Deferred retroactive augmentation. Rather than cycle back to the connecting state i for
every new j, more efficient revision is possible by delaying new augmentation of j until
the next N elements of the queue are ready. Then augmentation of elements j : j +N is
performed as a batch. The cycle begins at position a 6 i, which is the earliest connecting
state for the set of new states, and processes La:j+N,∗.

Pipelined retroactive augmentation. While the revision of La:j+N,∗ takes place, there are
new elements j + N + 1 : j + N + M being added to the augmentation queue. It is
not necessary for the second set of augmentations to wait for completion of the first set
before starting their own revision cycle. If the earliest connecting state of the second set
is b, then its cycle can commence once the revision process of the first set is past position
b. For the ordering in (25), suppose that augmentation takes place in three batches:

16

Figure 13: L and ŷ of the full joint state with elements 1 : N . The most recent
states for all platforms are contained in c : N . The earliest connection (i.e., leftmost
non-zero term) to this set is in column b, and the earliest connection to elements in
set b : c− 1 is in column a.

{A1, C1, B2, C2}, {A3, B3}, and {A5, C5}. The second set has its earliest connecting
state A1 at position 1, and processes L1:6,∗. The third set has its earliest connecting
state C2 at position 4, and processes L4:8,∗. This revision can commence on platform C
immediately after the processing for the second set has completed position 4.

4.3.4. Forgetting Past States

Clearly to maintain the full historical joint state is infeasible, since the state grows
without bound and the transfer of information between platforms is cumulative. However,
in terms of moment recovery, only the most recent states for each platform are of interest,
and the historical states are only to permit range fusion and cheap augmentation.

A particular property of the Cholesky factor L is that it propagates the information
from the upper states down to the bottom-right of the matrix. Thus, all information
for optimal marginal estimates of the lower states is contained in the bottom-right of L;
Cholesky factorisation effects an implicit marginalisation structure with a top-to-bottom
elimination order. Therefore, to recover optimal moments of lower states, the upper
portions of L are not required.

Consider the joint state in Figure 13, where the most recent states for all platforms
are contained in the lowest elements c : N . If the earliest connecting state to this set
is element b then, according to the properties in Section 3.4, the act of adding c : N
to the joint state only modifies {ŷb:N ,Yb:N,b:N ,Lb:N,b:N} as shown in Figure 14. The
retroactive modification of Lb:c−1,∗ is computed as

Lb:i−1,b:i−1L
T
i,b:i−1 = YT

i,b:i−1 − Lb:i−1,a:b−1L
T
i,a:b−1, (28)

Li,iL
T
i,i = Yi,i − Li,a:i−1L

T
i,a:i−1, (29)

where b 6 i < c. The terms to the left of column b in Lb:c−1,∗ are unchanged and do not
have to be recomputed. For the new augmented states Lc:N,∗, the block-rows c 6 i 6 N
are computed as

Lb:i−1,b:i−1L
T
i,b:i−1 = YT

i,b:i−1, (30)

Li,iL
T
i,i = Yi,i − Li,b:i−1L

T
i,b:i−1. (31)

17

Figure 14: Detailed view of the relevant submatrix and subvector from Figure 13,
showing the key block-rows of a, b, c and N . The act of adding elements c : N to
the joint state modifies ŷb:N and Lb:N,b:N . It also references, but does not modify,

f̂a:b−1 and Lb:c−1,a:b−1. The state elements 1 : a − 1 are obsolete and can be
forgotten.

Recovery of moments {x̂b:N ,Pb:N,b:N} is straightforward from Sections 3.4.2 and 3.4.3.
It is worth noting that for the mean calculation,

Lb:N,b:N f̂b:N = ŷb:N − Lb:c−1,a:b−1f̂a:b−1, (32)

the value of f̂a:b−1 is not modified by the augmentation of elements c : N , and can be
reused from when it was computed during moment recovery of these earlier states.

From the above equations, it is clear that the rows of {ŷ,Y,L} above element b are not
required for either future Cholesky modifications or moment recovery of states b onwards.
(The one exception is the need to retain f̂a:b−1.) Since these parts are obsolete, they do
not have to be stored or communicated, and can be deleted, keeping only the submatrix
and subvector shown in Figure 14. This bounds computation and communication costs.

5. Experiments

The decentralised solution proposed in this paper is tested on a series of simulation
experiments. Ten mobile platforms (labelled with A, B, C, etc), each moving according
to a random walk behavior, make range observations to each other and can communicate
with each other at any time. Only Platform A has GPS receiver, which allows us to
demonstrate the propagation of position information to other platforms (that lack GPS)
via inter-platform range measurements. The experimental parameters are as follows.
The standard deviations are: initial platform positions, 5 metres; velocity measurements
(from odometry), 1 metre/sec; GPS measurements, 5 metres; range measurements, 2
metres. The system operates in ∆T = 0.1s time steps. At each estimation time step,
the probabilities of a platform obtaining a measurement are: GPS, 10% (Platform A
only); range measurement to another platform, 5%. Note, the probability for range
measurements is for each platform interaction; so each time step, Platform A has 5%

18

probability of measuring Platform B, and 5% probability of measuring Platform C, etc.
Among all the parameters, the initial position error is chosen be small enough to mitigate
the problem of large non-linearities, and the other parameter values are non-critical.

Our simulated system has time-synchronous measurements. However, the decen-
tralised algorithm applies equally to real-world asynchronous systems, in which case
time-alignment is performed by projecting forward the platform states (according to the
motion model) to match the observation timestamps. This is the same approach as is
routinely applied in centralised filtering systems.

5.1. Comparison with a Distributed Solution

The distributed fusion algorithm presented in [16] was the basis for this current work.
The algorithm in [16] is distributed in the sense that information from each platform is
shared across the network, but is not decentralised because each platform accumulates
the full joint state history. Thus, every platform acts as a fusion centre and duplicates
the same joint estimate. The solution presented in this paper shares many of the local
estimation operations as in [16]: each platform builds a local Markov chain estimate
from odometry and GPS, and removes irrelevant states (i.e., states not involved in range
measurements).

The key difference is the formation of the joint state. In the current paper, range
measurements are shared only between pairs of platform and fused locally, and the joint
state is constructed by sequential communication according to the augmentation queue.
No single platform has the entire historical joint state (although a single platform will
have sufficient joint state to compute the most recent estimates of all platforms). In [16],
on the other hand, all range measurements are transmitted to all platforms, and each
platform constructs the full joint state history. Communication between platforms is ad
hoc, rather than sequential.

In the experiments that follow, a variation on [16] is implemented where all ranges
and platform states are sent to a single fusion centre. This avoids the redundancy of the
original solution, which makes every platform an identical fusion centre.

5.2. Results

Each platform in the team exhibits different estimation accuracies and time lags. In
the following figures, we show the results for the x-axis position of platform C. It is
important to realise that the estimators described here are optimal, in the same sense
as a Kalman smoother, but exhibit lags due to communication delays. However, each
platform is able to compute a suboptimal estimate of its own current state by predicting
forward from the most recent optimal estimate using its odometry. Figure 15 shows the
lagged optimal estimate and the ‘real-time’ suboptimal estimate. The time lags for the
optimal estimates are shown in Figure 16.

The estimation time lag of the decentralised method is larger than that in the dis-
tributed method as shown in Figure 16. The main delay in the decentralised method is
caused by the sequential processing of the augmentation queue to perform distributed
Cholesky modification.

The estimation accuracy should be evaluated on the whole platform team, not on a
single platform. We define the root mean square error (rmse) of x-axis position estima-
tion for the platform team as follows:

rmse(k) =

√∑
i∈Nk

(x̂i
k − xi

k)2

|Nk|
(33)

19

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

Time(s)

P
os

iti
on

(m
)

true position
lagged estimation
real−time estimation

Figure 15: The lagged and current-time estimates and 2-σ bounds for the x-axis position of
Platform C. Each delayed estimate is shown here at its ‘real’ time; the optimal estimate x̂k is
shown at time k, even though it is not available until time k+ tlag . Instead, the lag is shown
in Figure 16.

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

La
g(

s)

distributed method
decentralised method

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

rm
se

(m
)

decentralised method
distributed method

Figure 16: Time lags of the decentralised and distributed method. The state at each moment
k is estimated at time k + tlag .

20

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

La
g(

s)

distributed method
decentralised method

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

rm
se

(m
)

decentralised method
distributed method

Figure 17: Cooperative navigation accuracy of the distributed method and the decentralised
method. Note, although the delayed (optimal) estimates from the two methods are of the
same accuracy, the current-time (predictive) estimates from the distributed method is more
accurate due to smaller time lags.

1x 2x

3x

Figure 18: Graphical model of the three basic parts of the joint state: the obsolete historical
states x1, the link states x2, and the current states x3.

where xi
k is the ground truth value of x-axis position at time k for Platform i, x̂i

k is the
corresponding estimate; Nk is the set of platforms whose state at time k is recovered.
The results of rmse of the distributed method and the decentralised method are shown
in Figure 17.

6. Cost Analysis

We compare the decentralised method with the distributed method in terms of com-
putation cost, communication cost and robustness to platform failure.

6.1. Computational Costs

The computational costs of local operations—processing odometry and GPS—are
essentially the same for both methods. Markov chain construction is done on each plat-
form independently, and so the per-platform cost is independent of the size of the team.
Odometry data augmentation and GPS data fusion operations, each involve O(n2) com-
putational cost, where n is the dimension of an instantaneous state for a platform.

The computational costs involved in moment recovery are different for the two meth-
ods. Consider the representative system in (Figure 18) composed of three parts. The

21

Table 1: comparison of the moment recovery costs

method operation cost

distributed covariance
Ỹ22 = Y22 −YT

12Y
−1
11 Y12

P = Ỹ
−1

,where Ỹ =

[
Ỹ22 Y23

YT
23 Y33

] O(k31 + k21k2 + k22k1)

O(k2 + k3)3

distributed mean ỹ2 = y2 −YT
12Y

−1
11 y1

x = Pỹ,where ỹ =
[
ỹT
2 ỹT

3

]T O(k1k2)

O(k2 + k3)2

decentralised covariance

L̃22L̃
T
22 = Ỹ22 − L21L

T
21

L̃22L
T
32 = YT

32

L33L
T
33 = Y33 − L32L

T
32

Equation (24), where L =

[
L̃22 0
L32 L33

]

O(k22k1 + k32)

O(k22k3)

O(k23k2 + k33)

O(k2 + k3)3

decentralised mean
L̃22f̃2 = y2 − L21f1

L33f3 = y3 − L32f̃2

LTx =
[
f̃T2 fT3

]T
O(k22) + O(k1k2)

O(k23) + O(k2k3)

O(k2 + k3)2

historical (i.e., older, obsolete) states are x1, the states x2 are the set of linking states,
and x3 are the set of current states. For a system of N platforms, there are O(Nn) states
in x3, and a similar number of linking states in x2. The great majority of states are in x1.
Over time, the information submatrix for x3 becomes dense, as does its connections to
the linking states, and so the computational costs of moment recovery may be considered
a function of the length of these subvectors. The operations and computational costs to

recover the moments for states x =
[
xT
2 ,x

T
3

]T
with the distributed and decentralised

methods are listed in Table 1, where ki is the length of vector xi for i = 1, 2, 3. These
values show that the computational costs for the decentralised method are comparable
to that of the distributed method.

6.2. Communication Costs

The communication costs for the distributed and decentralised methods are quite
different, since the first performs joint estimation and marginalisation at a single fusion
centre while the latter distributes the joint state. For distributed method, the main
communication cost is the transmission of all range measurements to the server, each
accompanied by a pair of instantaneous vehicle-position states. This cost is O(Nn2)
per-timestep, where n is the length of a platform’s instantaneous state vector and N is
the number of platforms.

For the distributed method the cost is considerably higher, since the accumulated
set of Cholesky factors rows are forwarded in augmentation queue sequence, as shown in
Figure 10. Since for i � 1 the number of non-zero terms in each Li∗ is O(Nn2), for a
system of N platforms the per-timestep communications cost is O(N2n2). The cost will
be higher still due to the repetition of communications with retroactive augmentation.

22

6.3. Robustness to Platform Failure

Suppose a single platform fails and ceases to communicate. We assume this failure is
detectable by the other platforms. In this case, both distributed and decentralised meth-
ods are able to operate consistently. The distributed system in Section 5.1 is unaffected
unless the failed platform is the server platform. Server failure is addressed simply by
having multiple redundant fusion centres. The extreme case described in [16] has every
platform a server, but good robustness is achievable with far less redundancy.

For the decentralised solution described in this paper, redundancy also exists on every
platform, and recovery to platform failure is accomplished by modifying the augmenta-
tion queue to eliminate future communication with the lost platform. This operation is
complicated by the existence of unresolved links to the platform, whether due to range
measurements or motion measurements. So, recovery involves eliminating the failed plat-
form from the augmentation queue and removing any unresolved links to that platform.

7. Conclusions and Extensions

In the paper, a novel decentralised approach to the cooperative multi-platform navi-
gation problem is investigated. The approach uses the information filter framework and
integrates delayed states and distributed Cholesky modification. In the decentralised so-
lution, localised fusion distributes the computation load and avoids transmission of high
frequency motion data; the modular fusion capability of each platform provides good
scalability and robustness to platform failure. The estimates obtained are optimal, in
the same sense as a Kalman smoother, but are lagged due to communication delays. Sub-
optimal predictions from the most recent (but lagged) optimal solution permits real-time
estimates of the current state.

The scenario given in Section 3.1 describes a general cooperative navigation prob-
lem that can be solved using the decentralised approach. In the scenario, a variety of
sensing modalities can be employed; the platform team can be both homogeneous and
heterogeneous. Further more, the approach is not limited to the cooperative navigation
problem, it can be applied to cooperative target tracking, cooperative exploration, coop-
erative SLAM(simultaneous localization and mapping), etc. The decentralised structure
appears to be a general paradigm for decentralised estimation.

Comparing with the distributed solution presented in [16], the decentralised solution
generates the same optimal result, but with a very different distribution strategy. It
has similar costs but is not a superior algorithm. Its estimation lag is larger and it is
more expensive in terms of communication. In sum, the distribution and communication
of Cholesky factors is more expensive than marginalisation and moment recovery from
information states at a fusion centre.

In future work, we plan to investigate the effects of linearisation on decentralised
estimation. Linear model approximations are routinely applied to nonlinear systems,
whether opportunistically, as with an EKF, or with iterative revision, as with iterated
Kalman smoothing. The problems of opportunistic linearisation is exacerbated in a
distributed system, since approximations may be based on less available information due
to communication and estimation lags. Whether an efficient means of iterative or revised
linearisation is possible for decentralised estimation is of significant interest.

Appendix A: State and Information Operations

This appendix briefly summarises state and information form parameterisations of
multi-variate Gaussians. The key operations of marginalisation and conditioning in each
form are presented.

23

A.1. Covariance and Information Parameterisations for Gaussians

Consider a random variable x whose probability density function (pdf) is Gaussian.
This pdf can be parameterised either in terms of a state mean x̂ and variance P as

P (x) = NS(x; x̂,P) ∝ exp

(
−1

2
(x− x̂)

T
P−1 (x− x̂)

)
(A-1)

or in terms of an information vector ŷ and information matrix Y in information form
(sometimes called canonical form) as

P (x) = NI(x; ŷ,Y) ∝ exp

(
−1

2
xTYx + xT ŷ

)
(A-2)

where
Y = P−1, and ŷ = P−1x̂. (A-3)

Consider now a joint state-vector x =
[
xT
1 ,x

T
2

]T
, the joint pdf may be written either

in the form

P (x1,x2) ∝ exp

(
−1

2

[
x1 − x̂1

x2 − x̂2

]T [
P11 P12

PT
12 P22

]−1 [
x1 − x̂1

x2 − x̂2

])
(A-4)

or as

P (x1,x2) ∝ exp

(
−1

2

[
x1

x2

]T [
Y11 Y12

YT
12 Y22

] [
x1

x2

]
+

[
x1

x2

]T [
ŷ1

ŷ2

])
(A-5)

where [
Y11 Y12

YT
12 Y22

]
=

[
P11 P12

PT
12 P22

]−1
(A-6)

and [
ŷ1

ŷ2

]
=

[
P11 P12

PT
12 P22

]−1 [
x1

x2

]
=

[
Y11 Y12

YT
12 Y22

] [
x1

x2

]
. (A-7)

It should be noted that Yii 6= P−1ii , i = 1, 2.

A.2. Marginalisation

Marginalisation eliminates one of the two variables through integration

P (x1) =

∫
P (x1,x2)dx2, P (x2) =

∫
P (x1,x2)dx1. (A-8)

In covariance form marginalisation is simply variable elimination, so,

P (x1) = NS(x1; x̂1,P11), P (x2) = NS(x2; x̂2,P22). (A-9)

In information form we have

P (x1) = NI(x1; ỹ1, Ỹ1), P (x2) = NI(x2; ỹ2, Ỹ2), (A-10)

where the parameters of the marginal densities are given by

ỹ1 = ŷ1 −Y12Y
−1
22 ŷ2, Ỹ1 = Y11 −Y12Y

−1
22 Y

T
12,

ỹ2 = ŷ2 −YT
12Y

−1
11 ŷ1, Ỹ2 = Y22 −YT

12Y
−1
11 Y12, (A-11)

and where, in contrast to (A-7), Ỹi = P−1ii , i = 1, 2.

24

A.3. Conditioning

Recall the definition of conditional probability,

P (x1 | x2) =
P (x1,x2)

P (x2)
, and P (x2 | x1) =

P (x1,x2)

P (x1)
. (A-12)

In covariance form, we have

P (x1 | x2 = x2) = NS(x1; x̂1|2,P1|2), P (x2 | x1 = x1) = NS(x2; x̂2|1,P2|1) (A-13)

where

x̂1|2 = x̂1 + P12P
−1
22 (x2 − x̂2)

P1|2 = P11 −P12P
−1
22 P

T
12, (A-14)

x̂2|1 = x̂2 + P21P
−1
11 (x1 − x̂1)

P2|1 = P22 −P21P
−1
11 P

T
21. (A-15)

In information form the conditional can be found by variable elimination in an anal-
ogous manner to that for state-variable marginalisation

P (x1 | x2 = x2) = NI(x1; ŷ1|2,Y11), P (x2 | x1 = x1) = NI(x2; ŷ2|1,Y22), (A-16)

where Y11 and Y22 are the sub-information matrices taken directly from the joint, and
the information vectors are given by

ŷ1|2 = ŷ1 −Y12x2, ŷ2|1 = ŷ2 −YT
12x1. (A-17)

A.4. Linear Relations Between Variates

Consider a random variable x2 constructed from a linear combination of two other
random variables x1 and u as

x2 = Tx1 + u, P (x1) = NS(x1; x̂1,P1), P (u) ∼ NS(u; û,U). (A-18)

The mean and variance of the joint P (x1,x2) are given by[
P11 P12

PT
12 P22

]
=

[
P11 P11T

T

TP11 TP11T
T + U

]
,

[
x̂1

x̂2

]
=

[
x̂1

Tx̂1 + û

]
. (A-19)

The corresponding information matrix can be obtained by direct inversion of the joint
covariance matrix[

Y11 Y12

YT
12 Y22

]
=

[
P11 P12

PT
12 P22

]−1
=

[
P−111 + TTU−1T −TTU−1

−U−1T U−1

]
. (A-20)

The joint information vector can now be found as[
ŷ1

ŷ2

]
= Y

[
x̂1

x̂2

]
=

[
P−111 x̂1 −TTU−1û

U−1û

]
. (A-21)

25

A.5. Observation Updates

Given a prior probability of joint state-vector x =
[
xT
1 ,x

T
2

]T
as in (A-4) or (A-5),

and an observation of the state x2,

z = Hx2 + r, r ∼ NS(r;0,R), (A-22)

the fusion of this observation with the prior is accomplished by conditioning as

P (x1,x2 | z) =
P (x1,x2, z)

P (z)
, P (z) =

∫ ∫
P (x1,x2, z)dx1dx2. (A-23)

From Equations (A-19, A-14), we have P (x | z = z) = NS

(
x;x̂|z,P|z

)
, where

x̂|z =

[
x̂1

x̂2

]
+

[
P12H

T

P22H
T

] (
HP22H

T + R
)−1

(z −Hx̂2) ,

P|z =

[
P11 P12

PT
12 P22

]
−
[

P12H
T

P22H
T

] (
HP22H

T + R
)−1 [

HPT
12 HP22

]
. (A-24)

From Equations (A-20,A-21, A-16,A-17), we have P (x | z = z) = NI

(
x; ŷ|z,Y|z

)
, where

ŷ|z =

[
ŷ1

ŷ2 + HTR−1z

]
, Y|z =

[
Y11 Y12

YT
12 Y22 + HTR−1H

]
. (A-25)

In information form, fusion modifies only the sub-states involved in the observation
model.

References

[1] L. E. Parker, “Current state of the art in distributed autonomous mobile robotics,”
in Distributed Autonomous Robotic System 6, R. Alami, R. Chatila, and H. Asama,
Eds. Springer-Verlag, Tokyo, October 2000, pp. 3–12.

[2] P. Maybeck, Stochastic Models, Estimation and Control. Academic Press, New
York, 1979, vol. 1.

[3] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. SIAM, 2004.

[4] S. Roumeliotis and G. Bekey, “Distributed multi-robot localization,” IEEE Trans-
actions on Robotics and Automation, vol. 18, pp. 781–795, 2002.

[5] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach to col-
laborative multi-robot localization,” Autonomous Robots, vol. 8, no. 3, pp. 325–344,
2000.

[6] A. Howard, M. Matari, and G. Sukhatme, “Localization for mobile robot teams:
A distributed MLE approach,” in Experimental Robotics VIII, B. Siciliano and
P. Dario, Eds. Springer-Verlag, 2003, pp. 146–155.

[7] R. Madhavan, K. Fregene, and L. Parker, “Distributed heterogeneous outdoor multi-
robot localization,” in the IEEE International Conference on Robotics and Automa-
tion, 2002, pp. 374–381.

[8] S. Thrun, Y.Liu, D. Koller, A. Ng, and H. Durrant-Whyte, “Simultaneous localisa-
tion and mapping with sparse extended information filters,” International Journal
of Robotics Research, vol. 23, no. 7–8, pp. 693–716, 2004.

26

[9] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state filters,” in
IEEE International Conference on Robotics and Automation, 2005, pp. 2417–2424.

[10] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and map-
ping via square root information smoothing,” International Journal of Robotics Re-
search, vol. 25, no. 12, pp. 1181–1203, 2006.

[11] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM):
Part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006.

[12] M. Deans and M. Hebert, “Experimental comparison of techniques for localization
and mapping using a bearing-only sensor,” in Experimental Robotics VII, D. Rus
and S. Singh, Eds. Springer-Verlag, 2000, vol. 271, pp. 395–404.

[13] J. J. Leonard and R. J. Rikoski, “Incorporation of delayed decision making into
stochastic mapping,” in Experimental Robotics VII, D. Rus and S. Singh, Eds.
Springer-Verlag, 2001, vol. 271, pp. 533–542.

[14] J. Leonard, R. Rikoski, P. Newman, and M. Bosse, “Mapping partially observ-
able features from multiple uncertain vantage points,” The International Journal of
Robotics Research, vol. 21, no. 10–11, pp. 943–975, 2002.

[15] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient view-based
SLAM using visual loop closures,” IEEE Transactions on Robotics, vol. 24, no. 5,
pp. 1002–1014, 2008.

[16] T. Bailey and H. Durrant-Whyte, “Decentralised data fusion with delayed states
for consistent inference in mobile ad hoc networks,” 2007. [Online]. Available:
http://www-personal.acfr.usyd.edu.au/tbailey/

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins
University Press, 1996.

[18] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: An-
tecedents and directions,” Autonomous Robots, vol. 4, no. 1, pp. 7–27, March 1997.

[19] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[20] A. Björck, Numerical Methods for Least Squares Problems. SIAM, 1996.

27

