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Abstract

Data association is the process of relating features
observed in the environment to features viewed
previously or to features in a map. Correct feature
association is essential for mobile robot navigation as it
allows the robot to determine its location relative to the
features it observes.

This paper presents a graph theoretic method that is
applicable to data association problems where the
features are observed via a batch process. Batch
observations (e.g., scanning laser, radar, video) detect a
set of features simultaneously or with sufficiently small
temporal difference that, with motion compensation, the
features can be represented with precise relative
coordinates.

This data association method is described in the
context of two possible navigation applications: metric
map building with simultaneous localisation, and
topological map based localisation.

Experimental results are presented using an indoor
mobile robot with a 2D scanning laser sensor. Given two
scans from different unknown locations, the features
common to both scans are mapped to each other and the
relative change in pose (position and orientation) of the
vehicle between the two scans is obtained.

1 Introduction

This paper presents a method for robust data association
between two batch observations. A batch observation is
defined here as a perception of the environment wherein
the extracted set of features have accurately known
relative geometry. For example, features extracted from
a radar sweep, with appropriate motion compensation for
any movement of the radar unit during the sweep, can be
considered as a batch observation.

The basic philosophy of this data association method is
as follows. If static features exist that are common to two
batch observations, then the relative geometry between
those features must be the same in both observations. It
is assumed that in each observation there will be noise
and dynamic obstacles, which will result in false
features. There will also be valid features that are not
common to both observations due to their different
viewpoints. The aim, therefore, is to find a one-to-one

mapping of the features common to both batch
observations. This is done by selecting the largest subset
of features where the geometric constraints between
features are mutually satisfied.

The problem of mapping the common features from
two batch observations is equivalent to the graph
theoretic problem of finding the Maximum Common
Subgraph (MCS) between two graphs. In this paper, we
transform each batch observation into a graph by
equating features to graph vertices and the geometric
relationships between features to graph edges. It is then a
matter of solving the MCS problem to obtain the optimal
common feature mapping.

The experimental data used in this paper was obtained
from a 2D scanning range laser in an indoor
environment. The feature types that were extracted were
points and lines, and the relationships between these
features were distances and angles. The graph-based
representation used in this paper is not limited to these
types of features, however, and one of the advantages of
this method is that it is extendable to generic feature
types and their invariant inter-feature relationships. It is
also a simple matter to extend this method for use with a
3D sensor.

This paper is organised as follows. Section 2 discusses
two possible navigation applications for this technique.
Section 3 describes the vehicle and sensors used to
collect experimental data. The next section describes the
feature extraction methods used to generate static
features from each laser scan. Section 5 presents the
MCS algorithm, which is the core of this paper. Section
6 shows the results of the experimental data and section
7 discusses methods for detecting false data associations.
The final section makes concluding remarks on the
reliability of the matching process as demonstrated by
the experimental data.

2 Navigation Applications

One application for this technique is feature-tracking
which, for example, is required for building metric maps
while simultaneously localising the robot from the map
[9]. Presently feature observations are treated as isolated
events and are mapped to a particular tracked feature if
the location of the observed feature is sufficiently close
to the predicted location of the tracked feature.



Validation of this data association is determined by the
error between predicted and observed locations using a
threshold bound or observation gate. The size of this
gate is determined as a function of the tracked feature
covariance and vehicle pose covariance − typically
within a Kalman Filter framework. Any observation that
falls outside of a tracked feature's observation gate is
rejected as an observation of that feature [10]. In the case
where an observed feature falls within the observation
gate of more than one tracked feature, the observed
feature must either be rejected entirely or some more
sophisticated method, such as Multiple Hypothesis
Tracking [6], may be used to maintain more than one
possible data association.

Problems with the current feature tracking methods are
mainly due to the difficulty in ensuring one-to-one
feature mappings and to the propagation of the vehicle
location error to the observation error. A tight
observation gate is required to reject spurious
observations but this, in turn, requires very stringent
accuracy of the vehicle location. Therefore, if the vehicle
pose estimate drifts too far from its true pose, feature
tracking may fail through false data association or
restricted true data association, thus resulting in
localisation failure.

The graph-based data association method presented
here has several advantages for the feature tracking
problem. First, the matching process dependents only on
the relative geometry of features observed in a batch and
is therefore independent to vehicle pose errors. Second,
because a feature must conform to the geometric
constraints imposed by all the other features, the
individual error thresholds can be more relaxed. Finally,
as feature association is performed externally to the
(Kalman) filter framework, the filter can simply use the
results of this algorithm to update the corresponding
tracked feature estimates without having to deal with
data association.

A second application for this data association method
is for distinctive place recognition for topological maps
[13]. A distinctive place is a location in the environment
that is distinguishable from other places on the basis of
patterns observable in sensory data. A topological map is
a graph-based description of the environment where each
node is a distinctive place, and the connecting edges
between nodes contain procedural information that will
enable the vehicle to travel from one node to the next.

The primary weakness of topological map
representations has been reliable distinctive place
recognition in all but the most structured of
environments. Most methods to date are based on
simplistic models of common indoor features such as
doorways and corridor intersections [2][12][13]. A more
robust method is to describe a distinctive place by a
batch observation taken at that place. Subsequent
observations can then use the data association method
described here to determine the vehicle's pose with
respect to that distinctive place. More detail regarding
using this data association concept for topological maps
can be found in a previous paper [3].

3 Test Vehicle and Sensors

The data used in this paper was logged from an indoor
scanning laser mounted on a three-wheeled mobile robot
− SydNav, shown in Figure 1. SydNav is driven and
steered from the front wheel only. The two rear wheels
are fixed facing forwards and can rotate freely. The front
wheel has very accurate encoder data for steering and
drive. There are, however, quite substantial biases in the
dead reckoning estimate due to relatively coarse
approximations of the centre location of the three
wheels, the front wheel radius and the vehicle wheelbase.
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Figure 1: The SydNav mobile robot.

The scanning laser produces a 2D scan over 180° with
a resolution of 0.5°. It has a maximum range of about
30m. A complete scan from the laser can be obtained at a
rate of 2Hz on a 19200 baud serial link.

4 Feature Extraction

Feature extraction is performed on each individual laser
scan, with the assumption that the relative geometry
between features is fixed (i.e., the scan is an
instantaneous snapshot of the environment). This is
reasonable as the scan sweep takes about 0.04s and the
indoor robot moves at less than 0.5m/s. For higher speed
vehicles, some motion compensation would be required
to obtain accurate relative geometry between features.

Presently, the feature extraction algorithms are very
basic but they have been sufficient to produce reasonably
stable features from indoor laser data. The first step in
feature extraction is to cluster the range data. This is
performed sequentially starting from the first range
measurement in the scan. Each range measurement, Ri, is
compared with the next adjacent range measurement,
Ri+1, as shown below:

∆R = abs(Ri - Ri+1)
∆Rmax = C1 + C2 * min{Ri, Ri+1}
if ∆R < ∆Rmax → add to cluster
else → start new cluster

∆Rmax is the maximum distance two consecutive range
measurements may vary if they are to be considered part
of the same cluster. The constants C1 and C2 are tunable
to the noise and resolution characteristics of the laser.



They were set to 0.07m and 0.04m/m, respectively, for
the experimentation in this paper.

After clustering, three types of features are extracted:
foreground edges, foreground points and lines (see
Figure 2). Foreground edges and points are used because
they remain stable in the presence of occlusions. They
are obtained by checking the two edge points of each
cluster and comparing them with the edge points of the
two adjacent clusters. If either edge point has a shorter
range than the edge on the adjacent cluster, then that
point is classified as a foreground edge. If both edge
points have shorter ranges than the edges of the adjacent
clusters, and the cluster is small, then that cluster is a
foreground point.
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Figure 2: Feature extraction from a laser scan.

Lines are determined from the data points in each
cluster using a bisection method as follows. The two end
points of a cluster are connected by a line. Each point in
the cluster is then tested for distance from this line. If the
point of greatest distance from the line is sufficiently far
away, the cluster is split at that point and the process is
repeated. If, however, the point of greatest distance from
the line is reasonably close to the line, a line is fitted to
the valid point set using a least-squares based line-fitting
algorithm, such as in [11].

5 Maximum Common Subgraph Algorithm

The features extracted from a batch observation can be
represented as a graph where each node is a feature and
each edge is an invariant relationship between two
features. The data association problem (i.e., finding a
one-to-one mapping of common features between two
observations) can then be transformed to the problem of
finding the Maximum Common Subgraph (MCS)
between two graphs. Edges must be defined for every
pair of features in a graph, so that every node is
connected to every other node (i.e., a complete graph);
thus the MCS is equivalent to finding all the nodes that
are common to both graphs.

Some methods that have been used for finding the
MCS include backtrack search [14], neural networks [15],
and maximum clique [8]. The maximum clique based
method has been implemented in this paper. A clique is
defined as a complete subgraph within a graph (i.e., each

node is connected to every other node in the subgraph).
The maximum clique is the largest of these complete
subgraphs.

The maximum clique approach to finding the MCS is a
three-step process described in the sections below. The
first is to generate the two feature graphs for the laser
scan data. The second step involves generating a
correspondence graph between the two feature graphs.
Finally, the maximum clique of the correspondence
graph is found which, in turn, gives the mapping of
common features from the two laser scans.

5.1 Feature Graph Generation

After feature extraction, each laser scan is described by a
set of points and lines in a laser-centred coordinate
frame. A feature graph is generated by defining each
feature as a node and the geometric relationship between
two features as an edge. The conversion of this
geometric information to a graph representation is as
follows:

Nodes: P = point
L = line

Edges: P-P → distance
P-L → perpendicular distance
L-L → acute angle magnitude

An example geometric representation of node and edge
labeling is shown in Figure 3 and the equivalent graph
representation is shown in Figure 4. Only a few of the
edge labels are shown here to reduce clutter in the
diagrams.
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Figure 3 Geometric representation of features.
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5.2 Correspondence Graph Generation

Having generated two feature graphs, with their node
and edge labels, the creation of a correspondence graph
can be considered at a level of abstraction beyond the
laser scan matching problem, and is valid for any two
labeled undirected graphs. Figure 5 shows two graphs
with node labels {I, J, K} and edge labels {a, b, c, …},
and the resulting correspondence graph is shown in
Figure 6.
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Figure 5 Feature graphs A & B.

The method for defining a correspondence graph is
based on [4] (also described in [8]). First, create the
correspondence graph nodes from all the possible
pairings of same-labeled nodes from the two graphs. For
example, for the node type I, there is {A1,B1}, {A1,B2},
{A2,B1}, and {A2,B2}. Next, look for edge matches
between the two graphs. If the edge connects two same-
labeled nodes (e.g., 'a' connects I and I) then this
symmetry results in two edges being added to the
correspondence graph (e.g., {A1,B1} to {A2,B2} and
{A1,B2} to {A2,B1}). If, however, the edge connects
two different types of node label (e.g., 'e' connects I and
J) then only one edge is added to the correspondence
graph (e.g., {A1,B2} to {A3,B3}).

Essentially, an edge in the correspondence graph
implies the possibility of a mapping between the two sets
of points described at the nodes it connects. By finding
the maximum clique of this graph, the best point
mapping can be found.

5.3 Maximum Clique Search

Finding the maximum clique in an arbitrary undirected
graph is known to be an NP complete problem. A
computationally tractable solution is attainable, however,
because the correspondence graph is generally sparse
and there exists efficient exact or approximate methods
for finding the maximum clique when the search space is
not too large [5] [7] [8].

The algorithm used in this paper is an exact method
based on [7]. The maximum clique for our example
correspondence graph is shown in Figure 7. This result
means that feature 1 of graph A maps to feature 2 of
graph B (i.e., {A1, B2}) and so forth (i.e., {A2,B1},
{A3,B3}, and {A5,B5}).
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Figure 6 Correspondence graph of feature graphs A & B.
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Figure 7 Maximal clique of correspondence graph.

6 Experimental Results

Experimental results were based on data logged from the
2D scanning range laser on board the indoor mobile
robot, SydNav. Shown below (see Figures 8 and 9) are
two laser scans taken from different locations in a region
of a static corridor environment. These scans are
representative of this particular environment (with a
more complete description of this area being presented in
[3]). The location of the vehicle in these scans is depicted

Graph A

Graph B



by a triangle with the right-most point designating the
front.

The two scans were converted to feature graphs with
point and line node labels as described above. The
correspondence graph was generated with some variance
allowed in the edge matching process. These variances
were ±30cm for distances between two points, ±40cm
for perpendicular distances between a point and a line,
and ±0.1 radians for the acute angle magnitude between
two lines. The maximum clique was then found using the
algorithm referenced above.
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Figure 8 Features extracted from scan A.
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Figure 9 Features extracted from scan B.

Having found a one-to-one mapping of the features
common to both scans, the coordinate transform between
the two scans can then be calculated. This is done by first
finding the median rotation between the two scans,
rotating the second scan by this amount, and then
calculating the median translation required so that
corresponding features overlay each other. An alternative
method, which describes the calculation of a least-
squares transformation between two point sets, can be
found in [1].

Results of data association between the two example
scans can be seen in Figure 10, with the feature
mappings given in Table 1. This mapping meant that the
pose of the vehicle in Scan B with respect to the vehicle
pose in Scan A was found to be:

(x, y, φ) = (-2.85m, 1.24m, -1.16rad).

It should be noted that, because line features were
modeled here as infinite lines, mappings between
collinear line segments were not properly defined or
constrained. This is easily rectified by merging collinear
lines during the feature extraction process but, in any
case, a valid mapping is always obtained so this poses no
significant problems.

{A0, B1}

{A2, B3}

{A4, B4}

{A6, B5}

{A11, B7}
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Figure 10 Scan B transformed and overlaid on scan A.

Points Lines
{A0, B1} {A0, B3}
{A2, B3} {A2, B6}
{A4, B4} {A3, B4}
{A6, B5} {A4, B5}

{A10, B8} {A5, B7}
{A11, B7} {A7, B8}

Table 1 Mapping between the two feature graphs.



7 Error Detection

The only avenue for false mappings when using this data
association technique arises from the existence of feature
symmetries in the environment. That is, it is possible for
a set of features to be aligned such that they
coincidentally conform to the geometric constraints of a
different set of features. The probability of this occurring
decreases rapidly with the number of features mapped
between the two scans [3]. Generally false mappings are
detectable as they tend to result in a significant
discrepancy between the calculated vehicle pose and the
predicted vehicle pose. This discrepancy may be detected
using an additional pose estimating method (such as
odometry) or by checking the consistency of a particular
scan match with other scan matches.

When validating a particular scan mapping, the size of
the error threshold can be based on the precision of the
pose estimate available from the set of mapped features
(i.e., the variance of the vehicle pose estimate due to the
geometric configuration of the features). This variance
calculation is similar to the degree of precision available
from a particular constellation of satellites with GPS
navigation [16].

8 Conclusion

This paper presents a method for performing data
association. This method is valid when features are
observed as a batch observation such that they have
accurate relative geometric information. The mapping of
common features between two feature sets is
transformed into the graph theoretic problem of finding
the maximum common subgraph (MCS) which, in turn,
can be represented as a maximum clique problem. There
exists substantial literature on efficient methods for
solving the maximum clique problem so that it is a viable
method for real-time navigation systems.

Experimental results using the MCS method showed
that, given two laser scan observations, the largest subset
of features common to both scans could be obtained.
From these mapped features, it was simply a matter of
transforming the scans so that one overlaid the other to
find the relative change in pose of the vehicle between
the two observations.

The nature of the inter-feature geometric constraints
was such that the only possibility of false mappings was
from environmental symmetry. Mappings due to
environmental symmetry were generally detectable by
large discrepancies in the vehicle pose estimate.

A further advantage of the MCS approach is that it can
be extended generically to include different feature
types, including those extracted from other sensors,
provided that they have some invariant relational
properties to all the other feature types. Similarly, it is
trivial to extend this method to a 3D sensor, as the graph
representation simply requires feature types and the
relationships between them.

References
[1] Arun K. S., Huang T. S., Blostein S. D., "Least Squares Fitting of
Two 3-D Point Sets", IEEE Transactions on PAMI, vol. 9, no. 5, pp.
698-700, 1987.

[2] Aycard O., Charpillet F., Fohr D., Mari J. F., "Place Learning and
Recognition using Hidden Markov Models", Proceedings of the 1997
IEEE International Conference on Intelligent Robots and Systems, pp.
1741-1746, 1997.

[3] Bailey T., Nebot E. M., Rosenblatt J. K., Durrant-Whyte H. F.,
"Robust Distinctive Place Recognition for Topological Maps",
Proceedings of the 1999 International Conference on Field and Service
Robotics, pp. 347-352, 1999.

[4] Barrow H.G., Burstall R.M., "Subgraph Isomorphism, Matching
Relational Structures and Maximal Cliques", Information Processing
Letters, vol. 4, no. 4, pp. 83-84, 1976.

[5] Battiti R., Protasi M., "Reactive Local Search for Maximum
Clique", Proceedings of the Workshop on Algorithm Engineering, pp.
74-82, 1997.

[6] Blackman S. S., Multiple-Target Tracking with Radar Application,
Artech House, Norwood, MA, pp. 83-107, 1986.

[7] Bron C., Kerbosch J., "Algorithm 457 − Finding all Cliques of an
Undirected Graph", Communications of the ACM, vol. 16, pp. 575-577,
1973.

[8] Chen C. K., Yun D. Y. Y., "Unifying Graph Matching Problems
with a Practical Solution", International Conference on Systems,
Signals, Control, Computers, Sept. 1998.

[9] Dissanayake M. W. M. G., Newman P., Durrant-Whyte H. F.,
Clarke S., Csorba M., "An Experimental and Theoretical Investigation
into Simultaneous Localisation and Map Building", 6th International
Symposium on Experimental Robotics, pp. 171-180, March 1999.

[10] Durrant-Whyte H. F., "An Autonomous Guided Vehicle for Cargo
Handling Applications", International Journal of Robotics Research,
pp. 407-441, 1996.

[11] Kahn P., Kitchen L., Riseman E. M., "A Fast Line Finder For
Vision-Guided Robot Navigation", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, no. 11, pp. 1098-1102,
November 1990.

[12] Kortenkamp D., Weymouth T., "Topological Mapping for Mobile
Robots using a Combination of Sonar and Vision Sensing",
Proceedings of the 12th National Conference on Artificial Intelligence,
pp. 979-984, July 1994.

[13] Kuipers B. J., Byun Y. T., "A Robot Exploration and Mapping
Strategy Based on a Semantic Hierarchy of Spatial Representations",
Journal of Robotics and Autonomous Systems, pp. 47-63, 1991.

[14] McGregor J. J., "Backtrack Search Algorithms and the Maximal
Common Subgraph Problem", Software−Practice and Experience, vol.
12, pp. 23-34, 1982.

[15] Shoukry A., Aboutabl M., "Neural Network Approach for Solving
the Maximal Common Subgraph Problem", IEEE Transactions on
Systems, Man, and Cybernetics, vol. 26, no. 5, pp. 785-790, 1996.

[16] Spilker J. J., "Satellite Constellation and Geometric Dilution of
Precision", Progress in Astronautics and Aeronautics, vol. 163, pp.
177-208, 1996.


