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Abstract— Simultaneous Localisation And Mapping
(SLAM) is a stochastic map building method which permits
consistent robot navigation without requiring an a priori
map. The map is built incrementally as the robot observes
the environment with its on-board sensors and, at the
same time, is used to localise the robot. Typically, SLAM
has been performed using range-bearing sensors, but the
development of a SLAM implementation using only bearing
measurements is desirable as it permits the use of sensors
such as CCD cameras, which are small, reliable and cheap.

However, bearing-only SLAM is hindered by the feature
initialisation problem, where the estimated location of a
new map landmark cannot be determined from a single
measurement, and combined information from multiple mea-
surements may be ill-conditioned.

This paper presents a solution to the feature initialisation
problem called constrained initialisation, which defers the
use of sensor information until initialisation becomes well-
conditioned. Measurements may be used out-of-sequence and
all the available information can be incorporated without
inconsistency. Furthermore, this method operates within the
conventional extended Kalman Filter (EKF) framework of
the SLAM algorithm.

I. INTRODUCTION

While range-bearing SLAM has received a lot of atten-
tion in the recent literature (e.g., see [3], [8], [6]), little
work has been presented regarding bearing-only SLAM
due to the difficulty of feature initialisation. Nevertheless,
bearing-only SLAM is an attractive method as it permits
the use of cheap vision sensors rather than the expensive
laser hardware usually required for range-bearing imple-
mentation.

Bearing-only tracking has been discussed at some
length in the target-tracking literature, particularly with
regard to the insufficiency of the EKF to perform track ini-
tialisation. Various solutions have been presented includ-
ing using batch maximum-likelihood initialisation [11],
Gaussian sum filters [1] and Monte-Carlo filters [7]. Note,
target tracking requires estimation of the target velocity
as well as its position, and so is a harder problem than
bearing-only SLAM, which obtains velocity information
from dead-reckoning sensors. Thus, SLAM tends to be
stable within the EKF framework once a moderately well-
conditioned initial estimate for each feature is obtained.

The problem with feature initialisation is that a single
measurement does not constrain the feature location, and

at least two measurements are required. However, sequen-
tial pairs of measurements tend to possess insufficient
base-line to give a well-conditioned location estimate.
Non-linear batch initialisation methods offer a possible
solution, but a critical aspect they fail to address is when
to perform the operation. That is, they do not specify a
measure for when the result will be well-conditioned, and
simply requiring a large number of measurements is not
sufficient. (For example, a batch solution based on many
bearing measurements taken from the same location will
be incorrect regardless of the estimation technique.)

A particularly interesting non-linear batch initialisa-
tion method uses bundle adjustment [5] with excellent
results. The claim of this paper, though, is that good
results are possible for bearing-only SLAM within the
conventional EKF framework, provided an appropriate
“condition” measure is used to signal when to perform
feature initialisation.

The technique presented in this paper is based on the
constrained initialisation procedure presented in [14] for
range-bearing SLAM. A range-only (sonar) variant of this
method is presented in [10], [13], and introduces a power-
ful concept to defer the use of measurement information
by augmenting the SLAM state-vector with past vehicle
pose estimates. Thus, measurements can be postponed for
indefinite periods (limited by non-linearities), which is
useful if data association is uncertain or if an initial feature
estimate is ill-conditioned. In addition, the information
may be used out-of-sequence with other measurements.

This paper presents a variant of constrained initial-
isation for bearing-only data, where past vehicle pose
estimates are retained in the SLAM state so that feature
initialisation can be deferred until their estimates become
well-conditioned. Validation of this approach is shown by
a simulated SLAM implementation, which demonstrates
the consistency of constrained initialisation given known
data association. The data association process, in fact,
dovetails well with the deferred information approach, and
a batch data association method based on these deferred
constraints is an area of future research.

The format of this paper is as follows. The next
section briefly describes the basic bearing-only SLAM
algorithm for the case where the features have already
been initialised. Section III discusses the bearing-only



Fig. 1. Feature initialisation via the intersection of two
bearing measurements.

initialisation problem in detail and Section IV presents the
constrained initialisation algorithm. Section V introduces
a statistic of “Gaussianness” to determine whether a fea-
ture initialisation is well-conditioned. Section VI presents
simulation results using this algorithm and Section VII
discusses their implications. The final section concludes
with some interesting future extensions to this work.

II. BEARING-ONLY SLAM ALGORITHM WITH

INITIALISED FEATURES

The basic algorithm for range-bearing SLAM is well
known and can be found, for example, in [8], [6]. With
regard to notation, the augmented SLAM state �� �
���� ��

�
��
� � � � ����� �

� is defined by the vehicle pose �� �

��� � ��� �� �
� and the set of map features ��� � ���� � ��� �

� .
The bearing-only algorithm, assuming the set of features
is already initialised, is identical to the range-bearing
algorithm except that the observation model for a feature
��� is simply
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III. THE PROBLEM OF BEARING-ONLY FEATURE

INITIALISATION

The problem with bearing-only initialisation is that a
single measurement is insufficient to determine the loca-
tion of the feature, and at least two bearing measurements
��� and ��� from two different vehicle poses ��� and ���
are required. The location of the feature then is calculated
as the intersection of two lines as shown in Figure 1.
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If the bearing and pose estimates were perfectly known,
the feature location would be trivial from Equation 2 but,
as they are uncertain, the estimated feature location may
be ill-conditioned depending on several factors: (i) the
uncertainty of the pose estimates, (ii) the uncertainty of the
bearing measurements, and (iii) the base-line afforded by
the two vehicle locations. Furthermore, unless the correla-
tions between the two vehicle pose estimates are included
in the initialisation estimate, the estimated location may
be inconsistent (i.e., the estimated uncertainty is less than
its true uncertainty).

Yet another problem with bearing-only initialisation is
that data association cannot be uniquely determined from
less than three measurements. That is, any two bearing
estimates may intersect to give a nominal feature location,
and association constraint is only obtained through bearing
triplets. The data association problem, and the related issue
of tentative features in clutter, are not discussed further in
this paper, but might also be addressed by the constrained
initialisation concept described below.

IV. BEARING-ONLY CONSTRAINED INITIALISATION

ALGORITHM

The key operation of constrained initialisation is to store
past vehicle pose estimates in the SLAM state as follows.
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Each pose estimate ��� corresponds to the time and
location where a set of measurements
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was

obtained. (It is assumed that these bearing measurements
are uncorrelated to the vehicle and to each other, and so
may be accumulated in a separate observation vector.)

Thus, measurements of a given feature may be accu-
mulated over time until sufficient information is available
to initialise it in the map. At this point, all the available
measurement information can be constrained to give a
best location estimate. These constraints might be applied
simultaneously, as a batch, but this tends to perform badly
in practice for the standard EKF. For a conventional EKF
implementation, the quality of the solution depends on
the near-linearity of the observation model which, for
the highly non-linear model in Equation 1, means that
the estimate residual (or innovation) must be small. In
particular, bearing-only SLAM is sensitive to the order in
which measurements are processed. To avoid an inconsis-
tent update, measurements are processed in the following
order:

1) Measurements of existing map features are pro-
cessed first at each timestep. They are best processed



as a batch update as this appears to be a more linear
calculation than if they are applied sequentially.

2) If, for any non-initialised feature, there exists
within its set of accumulated measurements a well-
conditioned measurement pair (see below), this pair
is used to provide an initial feature estimate.

3) For each newly initialised feature, the remaining
accumulated measurements are applied, again via a
single batch update.

Even though these observation constraints are all available
at the same time, applying them in the order described
means that the estimate error is reduced at each stage for
the more sensitive updates in the stages below.

In order to permit steps 2 and 3 above, it is necessary
to perform two operations. The first is to augment the
state vector with pose information at each timestep where
measurements are obtained and deferred. Let ��� be the
current pose estimate and ��� be the rest of the map, the
pose is stored as follows.
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Thus, the vehicle pose at a given timestep is retained,
along with its correlations to other stored poses and the
existing map.

The second operation is to calculate whether a pair
of measurements for an uninitialised feature is well-
conditioned. The feature estimate for a given pair may
be considered well-conditioned if the true uncertainty
distribution for the feature location is well approximated
by a Gaussian, which implies that the transformation
from bearing-space to Cartesian-space is near-linear. If
a measurement pair is found to be well-conditioned, the
new feature is added to the state vector1 via Equation 2.
Subsequently, the remaining accumulated measurements
for this feature can be applied as ordinary observations.
And, finally, the obsolete stored pose estimates can be
deleted from the state (i.e., those stored poses that no
longer possess associated measurements).

V. A STATISTIC OF GAUSSIANNESS

A new feature is considered well-conditioned if the true
probability density function (PDF) of its location closely
resembles the Gaussian approximation obtained from a
Jacobian-based linearised transform. The statistic used to

1Further information on how to initialise a feature using Jacobians,
so as to determine its covariance and correlations with the existing
state, can be found in [2, Section 2.2.4]. This reference describes state
augmentation for range-bearing measurements, but the same approach
applies to bearing-bearing initialisation.

compare these two distributions is the Kullback-Leibler
distance or relative entropy [4].

In this section, first the linearised and then the true
distributions are derived, and finally the relative entropy
approach to comparing them is explained.

Given two vehicle pose estimates ��� and ��� , and their
associated bearing measurements ��� and ��� of a single
landmark, the transform to initialise the feature estimate
is as follows.�
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where �
�
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�
is given in Equation 2. The Ja-

cobian of this transform ��� � ��
����� 
��� 
��� 
��� �

permits
a linearised transformation of the covariance matrix of the
form �� � ������

�
�

, where � represents the covariance
matrix of the vehicle states and bearing measurements, and
�� is of the vehicle states and feature location.

The true (algebraic) density transformation for the non-
linear function in Equation 6 is given by
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where � ��� represents the joint PDF of the enclosed
parameters, and the Jacobian ����

� ��
���

is the partial
derivative matrix of Equation 8 with respect to the feature
location �� .�
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Note, the PDF �
�
��� ���� � ��� � ���

�
is an 8-dimensional

Gaussian for the two vehicle states and two bearing
measurements, but the � terms are substituted with the
functions in Equation 8 such that the distribution be-
comes a non-Gaussian function of ���� ���� ��� �. This
non-Gaussian function is then scaled by
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to produce the joint PDF of the vehicle states and initial
Cartesian feature location.

The relative entropy � �
 ���� “is a measure of the
inefficiency of assuming that the distribution is � ��� when
the true distribution is 
 ���” [4, page 18]. It is not a



true distance metric, as it is not symmetric and does
not satisfy the triangle inequality, but can still provide a
measure of how close two distributions are, such that a
threshold might be applied for when they are considered
near enough. Relative entropy is defined as follows
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which has the property that � �
 ���� � �, with equality
to zero if and only if the two distributions are identical.

The relative entropy is used here to compare the analyt-
ical transformed PDF from Equation 7 with the linearised
Gaussian approximation. Presently, a closed-form solution
to this calculation is not known and, instead, a Monte
Carlo solution is used. That is, the sample relative entropy
is obtained by first sampling
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 ��� and calculating the approximate relative
entropy as
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For the analytical PDF from Equation 7, and its lin-
earised Gaussian approximation, the sample relative en-
tropy is calculated via the following steps.

1) Sample from the 8-D Gaussian distribution
�
�
��� ���� � ��� � ���

�
, and record the likelihood

of the Gaussian at each sample point. Thus, we
have a set of samples
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set of weights ���� � � � � ��	.
2) Transform each sample �
 using Equation 6.
3) Scale each sample weight using Equation 9 such

that �
 � �
 � � ��	����� ��. Note, for each �
,
the Jacobian ���� is evaluated at the sample value,
which means that Equation 9 is evaluated as a
function of ��
�� ��



��
��
� �.

4) Compute the linearised Gaussian, with covariance
matrix �� � ������

�
� , from the known mean and

covariance of ���� ���� � ��� � ��� �
� and Equation 6.

5) For each sample �
 � ��
�� ��


��
��
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� calculate the
weight �
 for that point on the Gaussian distribution.

6) Compute the sample relative as � ����������		� �
�
�

��
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�
 � �
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�.

Computing the sample relative entropy in 8-D is expen-
sive and imprecise but, while not ideal, it appears from the
simulation results below to provide an adequate measure
for when feature initialisation becomes well-conditioned.

VI. SIMULATION

For this problem, assuming known data association,
simulation is in fact more instructive than real data results.
Simulation provides ground truth and true knowledge of
the noise statistics.
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Fig. 2. Simulation results showing estimated trajectory, true
feature locations and �� covariance ellipses of the estimated
feature locations.

In this experiment, the sensor field-of-view is 
�� de-
grees2 with a maximum range of 30 metres. For simplicity,
it is assumed that the bearing measurement uncertainty
is constant with ��� a degree standard deviation. The
simulated environment consists of 100 features randomly
distributed within a 100 by 100 metre region. The vehi-
cle starts at pose ����� ������������ and travels with
nominal speed and steer angle of ���	 and �������,
respectively. These nominal control values are corrupted
with Gaussian noise with standard deviations �����	 and
�������, respectively, for each ���	 time interval.

The results for the constrained initialisation SLAM are
shown in Figure 2. Here, the circle depicts the estimated
vehicle path, the points represent the true feature locations
(including non-observed features), and the ellipses indicate
the mean and �� uncertainty bounds of each feature
estimate after completing the loop. The errors in the
vehicle pose estimate are indicated in Figure 3 which
shows a plot of the error in the x-axis pose estimate and
its �� uncertainty estimate. Notice the sporadic dips in the
variance estimate, which are the result of deferred feature
initialisation and subsequent update with all accumulated
measurements.

Without the deferred measurements and check for well-
conditioned initialisation, the SLAM algorithm diverges
as soon as an initial mean is obtained that is sufficiently
distant from the true feature location. This occurs almost
immediately as sequential measurement pairs tend to be

2The limited field-of-view of a monocular camera is a significant hand-
icap compared to, say, panoramic vision as the maximum information
from bearing measurements occurs orthogonal to the vehicle motion.
This would indicate that a monocular camera is best installed offset to
the forward direction or on a pan-tilt head (active vision).
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Fig. 3. Absolute error between the estimated x-coordinate
location and the true value, shown with the �� uncertainty
estimate.

very ill-conditioned and the chance of a distant mean
estimate is very high. Constrained initialisation, on the
other hand, performs appropriately and also retains the
information from all intervening measurements.

The quality of the relative entropy statistic for ini-
tialisation, however, is questionable. Considerable tuning
of the “near-Gaussian” threshold was required to obtain
good initial feature values without failing to initialise the
features at all. In the result shown in Figure 2, a number
of features in the latter quarter of the loop were not
initialised because no bearing-bearing pairs reached the
required threshold. This indicates that the threshold should
perhaps be a function of the total uncertainty for the PDF
of ���� ���� ��� �

� .

VII. DISCUSSION

Constrained initialisation is clearly a powerful technique
for deferring measurement information and applying it
at a later time. The simulation results show that bearing
data can be deferred and incorporated out-of-sequence in a
consistent manner, without loss of information, due to the
maintenance of correlations between past vehicle states.

The key to consistent bearing-only SLAM, however, is
not information theoretic, but depends upon the feature
initialisation procedure reasonably meeting the EKF as-
sumptions of small-error, near-Gaussian estimates. Essen-
tially, the initial feature estimate must be “near enough”
to the true feature location. In practice, the duration of
postponement is not critical, provided dead-reckoning is
reasonably accurate, as all information is recovered up to
the limits imposed by non-linearity. The critical issue is
to ensure that initialisation is not performed too early and
is ill-conditioned. For non-linear batch methods, this may

require waiting until a combined set of measurements is
sufficient to define a well-conditioned estimate. For the
experiment in this paper, it involves delaying initialisation
until a single bearing-bearing pair yields a stable solution.

This paper presents a preliminary investigation of a
statistic for well-conditioned bearing-only feature initiali-
sation. The statistic chosen is the relative entropy between
the analytical PDF of the feature location and its linearised
Gaussian approximation, based on the concept that a close
match between these distributions indicates a near-linear
transformation from measurement-space to feature-space.
This statistic gave reasonable results over a limited set
of conditions, but possessed several problems. First, it re-
quires numerical Monte Carlo solution, which is imprecise
and computationally expensive. Second, the interpretation
of what is actually meant by imposing a threshold on
relative entropy is not clear. Typically, in the literature,
relative entropy is used to maximise the fit of a model
to a distribution, not to provide a threshold for nearness
of two PDFs. Also, from the simulation experiments, it
appears that the optimal threshold may not be constant,
but may need to increase when the analytical PDF has
larger uncertainty. Plainly, as a statistic for bearing-only
initialisation, the relative entropy requires substantial re-
finement in terms of computation and interpretation of the
threshold.

VIII. CONCLUSIONS AND FUTURE WORK

The constrained initialisation method presented in this
paper permits reliable and consistent bearing-only SLAM
within the statistical framework of the EKF. The key
contribution of this approach is the ability to consistently
defer information so that measurements may be used
at a later time and out-of-sequence. The accumulated
information may also be used to calculate whether a set of
measurements are sufficiently well-conditioned to permit
feature initialisation.

The relative entropy as a statistic of feature initiali-
sation consistency appears to effectively gate out very
ill-conditioned bearing-pairs, but is difficult to fine-tune
for marginally well-conditioned pairs. Future research
may examine the relationship between an optimal gate
threshold and the uncertainty of the PDFs being compared.
A further problem with the relative entropy statistic is its
computation, which preferably would have a closed-form
solution, or some more efficient numerical solution.

A reliable statistic for feature initialisation consistency
is crucial for any recursive formulation of bearing-only
SLAM, including those calculating initial estimates via
non-linear optimisation. It is hoped that this paper will
encourage investigation of alternative statistics that may
produce better results than the relative entropy approach
presented here. Some possible solutions might include:
(i) sensitivity analysis of the feature location estimate



due to variations in the vehicle pose values and bearing
measurements, or (ii) examining clusterings of feature
locations obtained from sets of bearing measurements
from different poses. It is important to note that some
traditional measures may not work due to the invalidity of
near-Gaussian assumptions. For example, a test examined
during this research was to compute the variance of
the range estimates obtained from a bearing-pair. This
test failed to detect very uncertain range estimates, even
when using a non-linear approximation of the transformed
distribution such as the unscented transform [9], as the
range PDFs were highly non-Gaussian (and, thus, not well
characterised by their second moment).

Finally, this paper presents simulation results with
known data association. An important quality of the
constrained initialisation method is its suitability to batch
data association methods (e.g., [12], [2]) as it retains
all correlation information to facilitate highly constrained
joint-likelihood associations. A significant challenge for
bearing-only SLAM will be to determine how to appro-
priately gate associations to non-initialised (deferred) fea-
tures, as they will possess non-Gaussian distributions and
will not obey the traditional �� probability of acceptance
models.
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