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Abstract— This paper presents an analysis of FastSLAM—
a Rao-Blackwellised particle filter formulation of simultaneous
localisation and mapping. It shows that the algorithm degenerates
with time, regardless of the number of particles used or the
density of landmarks within the environment, and will always
produce optimistic estimates of uncertainty in the long-term. In
essence, FastSLAM behaves like a non-optimal local search algo-
rithm; in the short-term it may produce consistent uncertainty
estimates but, in the long-term, it is unable to adequately explore
the state-space to be a reasonable Bayesian estimator. However,
the number of particles and landmarks does affect the accuracy
of the estimated mean and, given sufficient particles, FastSLAM
can produce good non-stochastic estimates in practice. FastSLAM
also has several practical advantages, particularly with regard to
data association, and will probably work well in combination with
other versions of stochastic SLAM, such as EKF-based SLAM.

I. INTRODUCTION

The problem of simultaneous localisation and mapping
(SLAM) is a fundamental capability for autonomous nav-
igation in unknown environments. The stochastic solution
to SLAM by Smith et al. [18] was the first to formally
address measurement error correlations that arise during the
map building process. As a robot builds a map, the landmark
location errors are dependent on the robot pose error and,
as the robot localises from this map, its pose estimate is
dependent on the landmark errors. Stochastic SLAM addresses
these dependencies explicitly by maintaining a joint estimate
of the vehicle and map states using a recursive Bayesian filter.
Throughout the 1990s, the dominant realisation of stochastic
SLAM was built on the extended Kalman filter (EKF). This
approach is subject to a variety of problems, with regard to
computational complexity, non-linearity and data association,
many of which have been addressed in the recent literature
(e.g., [1], [3], [14]).

The FastSLAM algorithm [12] is a new solution to stochastic
SLAM that is not based on the Kalman filter but, instead, uses
a particle filter [8] to approximate the ideal recursive Bayesian
filter. More precisely, it involves a partitioned state-space
whereby the robot pose states are represented by particles
and the landmark states are estimated analytically by Kalman
filters. This factoring of the state into a sampled part and
an analytical part is termed Rao-Blackwellisation [4], and the
FastSLAM algorithm is a Rao-Blackwellised particle filter.

By representing the robot pose with samples, FastSLAM
addresses the worst of SLAM’s non-linearity issues—the accu-
mulated non-Gaussianess of the pose uncertainty distribution.
It requires O(NM) computation and storage, where N is the

number of particles and M is the number of landmarks in the
map. Thus, for fixed N , it has linear time-complexity in M ;
hence the appellation “Fast”. (In fact, Montemerlo presents an
implementation that has O(N log2 M) time-complexity [12].)
FastSLAM has the added attraction that it permits each particle
to perform its own data association decisions, independent
of other particles, and so facilitates a simple form of multi-
hypothesis data association [13], [15].

An important property of the FastSLAM algorithm is that
each particle does not represent a single momentary robot
pose. Rather, it represents an entire robot path history and
associated map of landmarks. This has important implications
in terms of consistency—the ability of the filter to accurately
estimate uncertainty. That FastSLAM degenerates over time
has been noted in the literature (e.g., [12, Section 4.1],[17]).
In this paper, we examine this degeneracy quantitatively; we
examine how quickly particle diversity is lost, what the effect
of diversity loss has on the filter’s uncertainty estimate, and
how factors like number of particles and landmark density
affect estimation errors.

This paper foregoes full derivation of FastSLAM 1.0 and
2.0, as they are well explained in [12]. Rather, we focus on
the definition of the FastSLAM state, the effects of resampling,
and the ability of the algorithm to approximate the “true”
state uncertainty. We found FastSLAM 2.0 to be superior to
FastSLAM 1.0 in all respects due to its application of the
optimal importance function [7]. Therefore, all results in this
paper concern simulations of FastSLAM 2.0.

The next section presents the process and observation mod-
els used in our simulation experiments, which sets the context
for these results in terms of a 2-D vehicle with a range-
bearing sensor. Section III describes the Rao-Blackwellised
SLAM state and its properties. Section IV discusses the need
for resampling and its effects. Section V introduces the NEES
measure as a gauge of filter consistency. Section VI presents
the results of the simulation experiments in terms of estimate
consistency and rate of degeneration. The final two sections
provide discussion and conclusions.

II. MODELS FOR 2-D RANGE-BEARING SLAM
In this paper, we specify the SLAM state as the vehicle

pose (position and heading) and the locations of stationary
landmarks observed in the environment. The state at time k is
represented by a joint state-vector xk.

xk = [xvk
, yvk

, φvk
, x1, y1, . . . , xM , yM ]T =

[
xvk

m

]
(1)



Notice that the map parameters m = [x1, y1, . . . , xM , yM ]T

do not have a time subscript as they are modelled as stationary.
To describe the vehicle motion, we use the kinematic model

for the trajectory of the front wheel of a bicycle subject to
rolling motion constraints (i.e., assuming zero wheel slip).

xvk
= fv

(
xvk−1 ,uk

)
=




xvk−1 + Vk∆T cos(φvk−1 + γk)
yvk−1 + Vk∆T sin(φvk−1 + γk)

φvk−1 + Vk∆T
B sin(γk)




(2)
Here the time from k − 1 to k is denoted ∆T , and during
this period the velocity Vk and steering angle γk of the front
wheel are assumed constant. Collectively, the velocity and
steering values uk = [Vk, γk]T are termed the “controls”. The
wheelbase between the front and rear axles is B. The process
model for the joint SLAM state is simply a concatenation of
the vehicle motion model and the stationary landmark model.

xk = f (xk−1,uk) =
[

fv
(
xvk−1 ,uk

)
m

]
(3)

For a range-bearing measurement from the vehicle to land-
mark mi = [xi, yi]T , the observation model is given by

zik
= hi (xk) =

[ √
(xi − xvk

)2 + (yi − yvk
)2

arctan yi−yvk

xi−xvk
− φvk

]
(4)

Adding new landmarks to the map uses an inverse form of the
observation model as described in [1, Section 2.2.4] and [10,
Section 2].

The vehicle motion model, the observation model, and the
measured values of the control parameters uk, are not exact,
but are subject to noise, which lead to uncertainty in the state
estimate. For this reason, we require a probabilistic filter to
recursively estimate a distribution over the state given noisy
information.

We make the usual basic assumptions regarding the depen-
dencies of measurement errors. That is, the process model is
first-order Markov and independent of the map states,1

p
(
xvk

|Xv0:k−1 ,m,Z0:k−1,U0:k

)
= p

(
xvk

|xvk−1 ,uk

)
(5)

and the observations are independent conditioned on the joint
SLAM state.

p (Z0:k|Xv0:k ,m,U0:k) =
k∏

i=0

p (zi|xvi ,m) (6)

Multiple observations made at time k are also assumed condi-
tionally independent. We further assume that the distributions
in Eqns. 5 and 6 are Gaussian as this allows certain parts of
the FastSLAM algorithm to be reasonably approximated by
EKF equations.

1A brief note on notation. The probability density function (PDF) of a
random variable x is denoted p (x) and a sample drawn from this distribution
is x(i). A history of values {x0, . . . ,xk} from time 0 to time t is denoted
X0:k .

III. RAO-BLACKWELLISATED SLAM

Rao-Blackwellisation is a variance reduction technique for
Monte Carlo integration, whereby a joint probability density
function (PDF) is factored according to the product rule so as
to reduce the dimensionality of the simulation-space.

x =
[

x1

x2

]
(7)

p (x) = p (x2|x1) p (x1) (8)

It is applicable when p (x2|x1) can be evaluated analytically
so that simulation is restricted to the space of p (x1),

x(i)
1 ∼ p (x1) (9)

and exact inference can be used to compute p
(
x2|x(i)

1

)
.

Marginal estimates may be found as sums.

p (x2) ≈ 1
N

N∑

i=1

p
(
x2|x(i)

1

)
(10)

For a fixed number of samples, the random variation in
estimates based on Rao-Blackwellised sampling is always less
than (or equal to) that obtained by sampling from the entire
space of p (x).

A discussion of Rao-Blackwellisation applied to various
forms of Monte Carlo sampling is provided in [4], and is
presented as a way to reduce weight variance for particle filters
in [7]. A good discussion in the context of particle filters is
given in [16, Section 3.3], which shows the derivation of a
general state-space problem partitioned into particle filter and
Kalman filter components.

FastSLAM employs a particle filter primarily to address the
problem of representing a system that is non-linear and non-
Gaussian. It applies Rao-Blackwellisation to reduce the filter’s
sample-space from the joint state [xvk

,m]T to just the vehicle
pose states xvk

. The state partitioning in FastSLAM is defined
as follows.

p (Xv0:k ,m|Z0:k,U0:k)
= p (Xv0:k |Z0:k,U0:k) p (m|Xv0:k ,Z0:k,U0:k)
= p (Xv0:k |Z0:k,U0:k) p (m|Xv0:k ,Z0:k)

(11)

Here the joint posterior is factored into a vehicle pose part
and a map part conditioned on the pose. Notice that the joint
PDF is defined in terms of the vehicle pose history Xv0:k . This
is a critical aspect of the FastSLAM formulation as it permits
efficient estimation of the map states. That is, given Xv0:k , and
as a consequence of Eqn. 6, the individual landmark PDFs are
independent.

p (m|Xv0:k ,Z0:k) =
M∏

i=1

p (mi|Xv0:k ,Zi0:k) (12)

The FastSLAM posterior at time k is represented as a
set of N weighted particles {w0,X

(0)
v0:k , . . . , wN ,X(N)

v0:k} over
the vehicle pose states. Each sample X(i)

v0:k has an associated
map PDF p

(
m|X(i)

v0:k ,Z0:k

)
, which is assumed approximately



Gaussian and is manipulated by an EKF. From Eqn. 12, the
map PDF is a set of M independent 2-D Gaussians rather than
a single joint 2M -D Gaussian. Thus, each particle actually
represents: a pose history X(i)

v0:k , its weight wi, and its map
{m̂1,P1, . . . , m̂M ,PM}.

Conditioning the map by the vehicle pose history is essential
for the efficiency of the algorithm; keeping the landmark
estimates independent avoids the quadratic cost of computing
a joint map covariance matrix. Dependence on pose history is
also the key weakness of the FastSLAM algorithm as it means
the implicit dimension of the state-space increases with time.

IV. EFFECTS OF RESAMPLING

When implementing the FastSLAM algorithm, it is easy
to forget that each particle represents a history X(i)

v0:k since
the recursive equations at each time-step only require the
momentary pose estimate x(i)

vk . However, the dependence on
pose history is recorded in the sample weight and, most
significantly, in its map estimate. It is important to recognise
that a particle’s estimate of the map at time k is based on
the assumption that the vehicle pose was exactly known for
all preceeding time-steps. As time progresses, the likelihood
of adequately exploring the sample-space becomes vanishingly
small. This is seen most clearly in the particle resampling step.

A property of particle filters is that the variance of sample
weights increases with time [7].The filter degenerates until
eventually all samples but one possess negligible weight. To
offset this problem, resampling is performed, whereby samples
are chosen with replacement from the original sample set, to
generate an equal-weight sample set. This has been shown to
permit consistent recursive estimation with a fixed number of
particles provided a system exhibits “exponential forgetting”
of its past estimate errors [6].

The problem with FastSLAM is that past pose estimate
errors are not forgotten; they are recorded in the map estimates.
Whenever resampling is performed, for each particle not
selected, an entire pose history and map hypothesis is lost
forever. This depletes the number of samples representing past
poses and consequently erodes the statistics of the landmark
estimates conditioned on these past poses. After resampling,
some particles share a common ancestry, and loss of track
independence and loss of landmark estimate diversity increases
monotonically.

V. MEASURING CONSISTENCY

Ideally, to measure if a filter is consistent, one would
compare its estimate with the probability density function
obtained from an ideal Bayesian filter. This is not practical
for the FastSLAM algorithm. When the “true” PDF is not
available, but the true state xk is known, we can use the
normalised estimation error squared (NEES) [2, page 234]
to characterise the filter performance,

εk = (xk − x̂k)T P−1
k (xk − x̂k) (13)

where {x̂k,Pk} are the estimated mean and covariance.

A measure of filter consistency is found by examination of
the average NEES over N Monte Carlo runs of the filter.2

Under the hypothesis that the filter is consistent and approxi-
mately linear-Gaussian, εk is χ2 (chi-square) distributed with
dim(xk) degrees of freedom. Then the average value of εk

tends towards the dimension of the state as N approaches
infinity.

E[εk] = dim(xk) (14)

The validity of this hypothesis can be subjected to a χ2

acceptance test.
Consistency of FastSLAM is evaluated by performing multi-

ple Monte Carlo runs and computing the average NEES. Given
N runs, the average NEES is computed as

ε̄k =
1
N

N∑

i=1

εik
(15)

Given the hypothesis of a consistent linear-Gaussian filter,
Nε̄k has a χ2 density with N dim(xk) degrees of freedom.
Thus, for the 3-dimensional vehicle pose, with N = 50, the
95% probability concentration region for ε̄k is bounded by
the interval [2.36, 3.72]. If ε̄k rises significantly higher than
the upper bound, the filter is optimistic, if it tends below the
lower bound, the filter is conservative.

VI. EXPERIMENTAL RESULTS

In the following experiments, the vehicle model wheelbase
is 4 metres, the control noise is (σV = 0.3m/s, σγ = 3◦), and
the observation noise is (σr = 0.1m,σθ = 1◦). Controls are
updated at 40 Hz and observation scans are obtained every 5
Hz. Each scan consists of range-bearing measurements to all
landmarks within a 30 metre radius in front of the vehicle.
Data association is assumed known throughout.

Experiments were performed in the two simulated environ-
ments in Fig. 1, one sparsely populated and one dense. In
each environment, simulations were run with 100 particles
and 1000 particles. Resampling was performed, not after each
observation, but once the “effective sample size” [7] falls
below 75% of the total number of particles. Each run involved
two loops of the trajectory partially shown in Fig. 1 and they
were each repeated for 50 Monte Carlo trials.

It is immediately apparent from Fig. 1 that the dense map
permits more accurate results than the sparse map in terms of
real errors; the particles have smaller spread and are nearer
the true state. However, FastSLAM’s ability to estimate these
errors is less intuitive.

An estimate of the rate of loss of particle diversity is
obtained by recording the number of distinct particles rep-
resenting a chosen landmark. Once the landmark goes out of
sight, resampling causes some estimates to be lost and others
to be multiplied, and diversity is depleted. Fig. 2 shows that

2A commonly used test of filter consistency is to examine the sequence of
normalised errors {ε0, . . . , εk} over a single run. This test is not adequate
as the error sequence is correlated and does not follow a χ2 distribution.
Thus, even for a linear system, a single run of a consistent filter may appear
inconsistent and a single run of an inconsistent filter may appear consistent.
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(a) Sparse map (b) Dense map

Fig. 1. Feature maps used in simulation experiments. The stars denote the true landmark locations. The dots are the particle estimates for
vehicle and landmark locations during a typical run with 1000 particles, and the line is the mean estimate of the vehicle trajectory.
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(a) Sparse map, 100 particles
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(b) Sparse map, 1000 particles
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(c) Dense map, 100 particles
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(d) Dense map, 1000 particles

Fig. 2. Particle diversity for a landmark that is no longer visible. Each figure shows the number of distinct samples representing a single
landmark from the moment it disappears from the vehicle’s field-of-view. The three lines are the minimum, maximum and median diversity
obtained over 50 Monte Carlo runs.

diversity is lost exponentially. That Figs. 2(a) and 2(b) have the
same shape indicates that the ratio of distinct samples to total
number of samples remains approximately constant for a fixed
landmark density; sample size does not affect depletion rate.
However, Figs. 2(c) and 2(d) show that the rate of diversity
loss increases with landmark density. Thus, counter-intuitively,
more observation information implies faster depletion.

A comparison of the real errors and FastSLAM’s error
estimates is shown in Fig. 3. These figures plot the standard

deviations of the x-axis component of the vehicle pose.3 An
empirical estimate is calculated as the standard deviation of
xvk

− x̂vk
over 50 Monte Carlo runs, where xvk

is the true
state and x̂vk

is the sample mean of the particle filter. The

3These results tend to make FastSLAM look better than it really is
as process noise injects diversity into the pose estimate and maintains
its variance. If a landmark state had been chosen instead, the difference
between empirical and estimated variance would occur sooner and be more
pronounced.
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(a) Sparse map, 100 particles
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(b) Sparse map, 1000 particles
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(c) Dense map, 100 particles
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(d) Dense map, 1000 particles

Fig. 3. Estimated variance versus true variance. These figures show the standard deviation in the x-axis component of the vehicle pose
estimate. The top line is an empirical calculation obtained from xvk − x̂vk over 50 Monte Carlo runs. The lower line is the average particle
filter estimate; that is, the square-root of the sample variance averaged over 50 runs.
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(a) Sparse map, 100 particles
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(b) Sparse map, 1000 particles
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(c) Dense map, 100 particles
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(d) Dense map, 1000 particles

Fig. 4. Average NEES of the vehicle pose states xvk over 50 Monte Carlo runs. The two horizontal lines indicate the 95% probability
concentration region for a consistent filter.

FastSLAM estimate of uncertainty is the sample variance of
the particle filter, σ2

xk
, and the average of σxk

over 50 runs
indicates the typical result. It is worth noting that the variation
in σxk

from run to run is very large, sometimes slightly
greater than the empirical value, sometimes much smaller. This
variation is due to the sparseness with which the samples cover
the state-space, as is apparent from Fig. 1(a). (For the sake of
clarity, the individual run estimates are not shown in Fig. 3.)
However, after closing the loop, all runs collapsed to a single
particle and produced basically the same variance estimate.

Figs. 3(a) and 3(b) indicate that the number of particles

does not greatly affect the real accuracy of the filter, although
there is a slight improvement with more samples. However,
the increased number of particles does improve the quality of
the estimated uncertainty. Comparing these results with Figs.
3(c) and 3(d), we find that a more dense environment produces
smaller real errors, but the variance estimate tends to be worse.
Thus, FastSLAM can produce quite accurate results but will
always underestimate its uncertainty.

The NEES results in Fig. 4 provide a more formal measure
of consistency. These results are computed over the vehicle
pose states xvk

and, in each case, show that the filter becomes



rapidly optimistic. General trends are that consistency is
prolonged by using more particles but degrades more quickly
with higher landmark density. The result in Fig. 4(b) stays
reasonably consistent for the longest period but becomes
grossly optimistic shortly after the 120 seconds shown.

VII. DISCUSSION

Our results show that the rapid loss of particle diversity
prevents a consistent long-term estimate of the joint state PDF.
And yet, the quality of the FastSLAM results in the literature
(e.g., [12], [9]) indicate that it is quite effective in practice. We
would suggest that the accuracy of these results is testament
to quality of the sensors used (typically a scanning range
laser) rather than to the ability of the FastSLAM algorithm.
In essence, FastSLAM provides a non-optimal search, over a
finite time-horizon, for the most likely trajectory.

To prolong the time-period over which FastSLAM is rea-
sonably consistent, it is necessary to reduce the impact of
resampling. We found that tactics like oversampling and
resampling before computing the proposal distribution did not
provide any real advantage. One possible improvement might
be to replace resampling with partial rejection control [11],
which draws samples from several steps in the past rather than
the preceding time-step. Drawing from a past time-horizon
might produce more uniform weighting and slower depletion.

Montemerlo provides a proof showing that FastSLAM 2.0
converges asymptotically in the linear case with only one
particle [12]. This is very interesting as one-particle Fast-
SLAM is virtually identical to performing EKF-SLAM while
ignoring cross-correlations.4 Thus, no-correlation EKF-SLAM
will converge in the linear case. It is worth considering the
pioneering work by Castellanos et al. [5], where EKF-SLAM
with and without correlations is examined. There is no great
difference in real errors between the two forms, but full-
correlation EKF produces a consistent estimate of uncertainty
and the other does not.

VIII. CONCLUSION

FastSLAM in its current form cannot produce consistent
estimates in the long-term. Each particle implicitly records a
pose history in the statistics of its associated map. Every time
a particle is lost due to resampling, an entire map hypothesis
is lost and there is a depletion in historical information. As a
consequence the overall map statistics degrade.

In practice FastSLAM may produce quite accurate results in
terms of deviation from the true state. The final quality of this
result is dependent on sensor precision. However, FastSLAM’s
estimate of its accuracy soon becomes optimistic; it tends to
underestimate its own uncertainty. In other words, a higher
density of landmarks, or equivalently a more precise sensor or
more frequent observations, will improve accuracy in terms
of real errors, but it will also speed up particle depletion.
Therefore, in the long-term, FastSLAM is an inconsistent

4The only difference is that FastSLAM 2.0 introduces a small random jitter
into the pose estimate at each step, and so is slightly less accurate than its
“no-correlation” EKF counterpart.

stochastic filter but, as a heuristic (non-stochastic) estimator,
where only the mean or mode is valued, it can be both tractable
and highly accurate.

In the short-term, FastSLAM might produce consistent re-
sults given a sufficient number of particles. It also has practical
properties that make it an attractive short-term estimator,
particularly the ability to perform an intuitive type of multi-
hypothesis data association. One possible use for FastSLAM
is as a front-end SLAM component that processes current data
and forms a short-term local map, and later converts this map
to a joint Gaussian PDF and merges it with a global EKF-
SLAM map.

REFERENCES

[1] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor
Environments. PhD thesis, University of Sydney, Australian Centre for
Field Robotics, 2002.

[2] Y. Bar-Shalom, X.R. Li, and T. Kirubarajan. Estimation with Applica-
tions to Tracking and Navigation. John Wiley and Sons, 2001.

[3] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An Atlas framework for scalable mapping. In IEEE International
Conference on Robotics and Automation, pages 1899–1906, 2003.

[4] G. Casella and C.P. Robert. Rao-blackellisation of sampling schemes.
Biometrika, 83(1):81–94, 1996.

[5] J.A. Castellanos, J.D. Tardós, and G. Schmidt. Building a global map
of the environment of a mobile robot: The importance of correlations.
In IEEE International Conference on Robotics and Automation, pages
1053–1059, 1997.

[6] D. Crisan and A. Doucet. A survey of convergence results on parti-
cle filtering methods for practitioners. IEEE Transactions on Signal
Processing, 50(3):736–746, 2002.

[7] A. Doucet. On sequential simulation-based methods for Bayesian filter-
ing. Technical report, Cambridge University, Department of Engineering,
1998.

[8] A. Doucet, N. de Freitas, and N. Gordon. An introduction to sequential
Monte Carlo methods. In A. Doucet, N. de Freitas, and N. Gordon,
editors, Sequential Monte Carlo Methods in Practice, pages 3–14.
Springer-Verlag, 2001.

[9] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 206–211, 2003.

[10] S.J. Julier and J.K. Uhlmann. A counter example to the theory of
simultaneous localization and map building. In IEEE International
Conference on Robotics and Automation, pages 4238–4243, 2001.

[11] J.S. Liu, R. Chen, and T. Logvinenko. A theoretical framework
for sequential importance sampling with resampling. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods
in Practice, pages 225–246. Springer-Verlag, 2001.

[12] M. Montemerlo. FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem With Unknown Data Association.
PhD thesis, Carnegie Mellon University, 2003.

[13] M. Montemerlo and S. Thrun. Simultaneous localization and mapping
with unknown data association using FastSLAM. In IEEE International
Conference on Robotics and Automation, pages 1985–1991, 2003.

[14] J. Neira, J.D. Tardós, and J.A. Castellanos. Linear time vehicle
relocation in SLAM. In IEEE International Conference on Robotics
and Automation, 2003.

[15] J. Nieto, J. Guivant, E. Nebot, and S. Thrun. Real time data association
for FastSLAM. In IEEE International Conference on Robotics and
Automation, pages 412–418, 2003.

[16] P.-J. Nordlund. Sequential Monte Carlo Filters and Integrated Nav-
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