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Abstract— This paper presents a distributed algorithm for
performing joint localisation of a team of robots. The mobile
robots have heterogeneous sensing capabilities, with some having
high quality inertial and exteroceptive sensing, while others have
only low quality sensing or none at all. By sharing information,
a combined estimate of all robot poses is obtained. Inter-
robot range-bearing measurements provide the mechanism for
transferring pose information from well-localised vehicles to those
less capable.

In our proposed formulation, high frequency egocentric data
(e.g., odometry, IMU, GPS) is fused locally on each platform. This
is the distributed part of the algorithm. Inter-robot measurements,
and accompanying state estimates, are communicated to a central
server, which generates an optimal minimum mean-squared
estimate of all robot poses. This server is easily duplicated for
full redundant decentralisation. Communication and computation
are efficient due to the sparseness properties of the information-
form Gaussian representation. A team of three indoor mobile
robots equipped with lasers, odometry and inertial sensing pro-
vides experimental verification of the algorithms effectiveness in
combining location information.

I. INTRODUCTION

Estimating the position and heading of each platform in
a team of mobile robots is a fundamental capability for
autonomous cooperation. However, a heterogeneous team
may consist of some robots with high cost, high accuracy
localisation sensors, and others with low cost sensors, and
others perhaps with no form of exteroception at all. This
paper presents an efficient means to compute a joint estimate
of all robot poses. The team shares its information allowing
more able robots to assist those with lower quality instru-
mentation.

A centralised solution to the cooperative localisation prob-
lem is simple yet expensive. Each robot transmits its raw
measurements to a central server, which uses a conven-
tional Kalman filter to compute an optimal estimate of
all platform poses. This is expensive because the motion
data (e.g., odometry, IMU) of individual robots tends to
be high-bandwidth, resulting in high communications costs
and computational burden at the server. Also, a centralised
solution lacks robustness since the entire system fails if the
server fails.

This paper presents a distributed solution, whereby each
platform processes the bulk of their sensed data locally. A
central server is employed to fuse measurements involving

multiple platforms, but this phase deals with relatively low-
bandwidth data. It is straightforward to decentralise this
server also, in the sense of redundancy, creating multiple
duplicate servers to increase system robustness [3]. The
algorithm is optimal insofar as it is equivalent to a centralised
EKF or EKS given the same data (although communication
lag will slightly effect model linearisation). Efficient com-
munication is achieved by local (ie., decentralised) fusion of
high-rate sensor data and using a sparse information-form
representation to transmit summary state estimates.

The format of the paper is as follows. The next section
discusses previous work related to cooperative navigation.
Section III presents the details of the new algorithm. Sec-
tion IV describes an experimental scenario involving three
indoor robots that demonstrates how cooperative localisa-
tion transfers location information from a well-instrumented
robot to one without exteroceptive sensors. Section V gives
concluding remarks and future research directions.

II. RELATED WORK

Early work on cooperative localisation required coordina-
tion of the motion of the robot team, such that a subset would
remain stationary to act as landmarks or beacons as the rest
of the team moved forward [9]. This notion of stationary
landmarks was later relaxed and robots could track each
other while in motion using distributed statistical estimators,
such as maximum-likelihood over a finite time-horizon [8]
or Monte Carlo filters [7]. The estimators were distributed
by having each platform maintain an estimate of its own
trajectory subject to inter-robot observations, but with the
assumption that the trajectory estimate from one platform
is uncorrelated to the estimate of the others; an assumption
that eventually causes over-confidence and inconsistency in
the estimation process.

Consistent distributed estimation built on the EKF has
been demonstrated for cooperative localisation with both in-
door [17] and outdoor [11] mobile robots. Cross-correlation
terms of the joint covariance matrix are shared amongst the
platforms after each update step, which is an operation that
scales poorly with the number of robots in the team. An
alternative EKF-based approach has each platform maintain
a bank of EKFs [1]. Each filter corresponds to an interaction
with one of the other platforms, and book-keeping of the



cross-correlations between platforms ensures consistent data
fusion. This scheme is computationally expensive as the total
number of filters grows exponentially with the size of the
team, and suboptimal as the book-keeping strategy permits
fusion of only a subset of the available information. The
algorithm in [10] makes use of all available information,
but at the expense of transmitting all odometric data to its
neighbours, and duplicating the data fusion effort. Another
alternative [14] employs a maximum a posteriori estimator
that is distributed amongst the platforms and solved using
conjugate gradients. Although iterative methods such as this
have potential for cooperative localisation, the presented
solution has several drawbacks, primarily the requirement
for synchronous communication between platforms and the
large number of communications steps performed throughout
the estimation process.

While the Gaussian probability distribution is most com-
monly represented by its moments—the mean vector and
covariance matrix—it may also be represented by another
pair of sufficient statistics—the information vector and in-
formation matrix (or inverse covariance matrix). The off-
diagonal terms of the covariance matrix indicate marginal de-
pendency, while the off-diagonals of the information matrix
indicate conditional dependency. Consequently, the former
is typically dense while the latter is often sparse for many
temporal and spatial estimation problems. The information-
form is exploited in recent simultaneous localisation and
mapping (SLAM) solutions, where an information matrix
is tractable for large numbers of vehicle poses and map
features because it explicitly accounts for the sparsity in
the map-to-map and map-to-vehicle relationships [6], [5],
[2]. This sparse representation of conditional dependencies
is also applied to distributed inference in sensor networks
[15] and multi-sensor single-target tracking [12]. These im-
plementations address communication network structures for
exchanging information between platforms and methods for
data fusion, such as the junction tree algorithm [16].

The cooperative localisation problem is more general than
SLAM or conventional distributed sensor networks as the
entire system is dynamic; both the sensor platforms and the
tracked targets are in motion. A version of information-form
cooperative localisation is presented in [13], where sparse
Cholesky factors of the joint state estimate are pipelined
from platform to platform. This approach has higher lag
and computational expense than the current work, but in
the current work we apply the idea of incremental Cholesky
operations for efficient fusion and moment recovery. The
current work extends the concepts in [3], which employs
the sparse information-form and has a two-stage partitioning
of data fusion—one for egocentric data and another for
inter-robot measurements. This strategy facilitates decen-
tralised processing and asynchronous communications, but
duplicates the cost of fusing inter-robot measurements on
every platform. The current work simplifies the method of
generating local state estimates and reconstructing the joint
state, and presents a flexible single-server arrangement that
easily extends to multiple decentralised servers if required.

(a) Directed graphical model of all states and data

(b) Local Markov chain for platform A

(c) Server estimate

Fig. 1. Graphical models for a two-robot cooperative localisation
example. The system (a) is composed of pose states (xk), egocentric
data local to each platform (motion uk−1,k and position zgps ), and
inter-robot measurements (zAB). The egocentric data is fused locally
to form a Markov chain (b), and relevant pose estimates are sent to a
central server, where inter-robot measurements are fused (c).

III. AN ALGORITHM FOR DISTRIBUTED COOPERATIVE
LOCALISATION

Cooperative localisation is a joint estimation problem over
the time-history of a robot team. To illustrate, Fig. 1(a) shows
a two-robot system. The algorithm presented in this paper
distributes evaluation of this graphical model, and is sub-
stantially more efficient, in communication and computation,
than any existing exact solution. Each platform’s egocentric
measurements are fused locally to create a Markov chain of
robot pose estimates, as in Fig. 1(b), which is independent
of all other platforms. These independent estimates become
dependent when coupled by inter-platform measurements
(e.g., range-bearing), which are fused at the central server,
see Fig. 1(c).

All operations are asynchronous, but depend on syn-
chronised clocks on all robots and accurate timestamping
of measurements. Notably, inter-robot measurement events



Fig. 2. When robot A makes an inter-robot measurement of C, it
sends the measurement timestamp tz to C, and a measurement packet
to the server composed of the timestamp, the measurement and its
covariance, and the two platform identifiers. This interaction has no
effect or dependence on robot B; all communication and computation
is asynchronous.

drive the estimation process, as shown in Fig. 2, wherein
if platform A makes an observation of platform C, it sends
the event timestamp to the observed platform (C) and sends
a packet of measurement data to the central server. The
maximum communication lag (tL) for platform A to inform
platform C of the event at time tz delays the processing of
C’s egocentric data, and so introduces a time horizon for
local fusion, as discussed in Section III-B.

A. Notation for Information-Form Estimation

A random vector x with Gaussian uncertainty is usually
represented in terms of its two moments N (x; x̂,P), where
x̂ is the mean vector and P is the covariance matrix. In this
work, we instead use the information-form representation of
a Gaussian NI(x; ŷ,Y), where ŷ is the information vector
and Y is the information matrix. These terms are related to
the moment-form as Y , P−1 and ŷ , Yx̂. Given a joint
state vector,

x =

[
x1

x2

]
, (1)

where x1 and x2 are sub-vectors, the information-form
representation of a Gaussian probability distribution over
these states is given by

ŷ =

[
ŷ1

ŷ2

]
, Y =

[
Y11 Y12

YT
12 Y22

]
. (2)

The information-form possesses additivity and sparsity prop-
erties that facilitate cheap distributed estimation. It may be
exactly represented as an undirected graph, as shown in
Fig. 3. The information vector and the diagonal terms of
the information matrix are represented by graph nodes, such
that the quantities {ŷi,Yii} are given by node xi. The off-
diagonal terms of the information matrix form edges in the
graph, such that a non-zero value for element Yij gives an
edge connecting nodes xi and xj .

B. Local Augmentation and Fusion Operations

Local processing on each platform involves constructing a
Markov chain of robot pose estimates over time. Each odom-
etry measurement (uk−1,k) augments the chain, appending a

Fig. 3. Graphical model of (2). The nodes represent the relevant parts
of the information vector and (block-)diagonal terms of the information
matrix, and the edges represent non-zero off-diagonal terms of the
information matrix.

new pose state according to a motion model as follows

xa =

 x1

x2

x3 = f(x2,u23)

 . (3)

In information-form the estimate is augmented as

ŷa =

 ŷ1

ŷ2 −∇fTx2
U−1[f(x̂2,u)−∇fx2

x̂2]
U−1[f(x̂2,u)−∇fx2

x̂2]

 , (4)

Ya =

 Y11 Y12 0
YT

12 Y22 +∇fTx2
U−1∇fx2 −∇fTx2

U−1

0 −U−1∇fx2 U−1

 ,

(5)

where ∇fx2
= ∂f

∂x2
and U is the uncertainty in u. (The

above equations actually represent a simplified augmentation
operation, x3 = f(x2)+u. The more general form in (3) re-
quires replacing each instance of U−1 with (∇fuU∇fTu )−1.)
Notice that augmentation does not alter any elements in (4)
or (5) relating to state x1, since it does not appear in the
motion model f(.).

Other egocentric data (e.g., GPS, IMU) are incorporated as
fusion operations. For instance, suppose a GPS measurement
at time k = 2 has a model of the form z2 = h(x2) + r,
where r is zero-mean Gaussian noise with covariance R. The
information-form fusion operation therefore affects only the
elements for x2,

ŷf =

 ŷ1

ŷ2 +∇hT
x2
R−1(z− h(x̂2) +∇hx2 x̂2)

ŷ3

 , (6)

Yf =

 Y11 Y12 0
YT

12 Y22 +∇hT
x2
R−1∇hx2

Y23

0 YT
23 Y33

 . (7)

In this way each node in the Markov chain is a pose
estimate for a particular moment in time and, for the times-
tamp of each new egocentric measurement, a new node is
added to the chain.1 Nodes are also added for the timestamps
of relevant inter-robot measurements. Thus, for platform A,
there is a node generated for each measurement taken by A
(of B or C), and also a node for each measurement taken by
the other platforms of A.



(a) Before marginalisation

(b) After marginalisation

Fig. 4. Elimination of node x3 alters the links and nodes of its
immediate neighbours. Other parts of the graph are unaffected.

C. Marginalisation and Packet Formation

The reason for adding nodes to the Markov chain is to
permit deferred data fusion of measurements obtained at
those recorded moments. Egocentric data is fused locally
soon after it is obtained (depending on time horizon th, see
below) while inter-robot data is fused later at the central
server. Therefore, nodes in the Markov chain recorded for
egocentric data are obsolete before the chain is transmitted
to the server, and can be removed by marginalisation.

Given the joint state vector in (1), marginalisation to
eliminate x2 has the following information form expression,

ŷm
1 = ŷ1 −Y12Y

−1
22 ŷ2, (8)

Ym
11 = Y11 −Y12Y

−1
22 Y

T
12. (9)

While it is not immediately apparent from these equations,
marginalisation is a sparse operation. A graphical depiction
of a sparse system with several states (see Fig. 4) shows that
eliminating a node has local effect, creating a clique between
its former neighbours.

At time k, a local platform (e.g., A) has all of its local
information up to tk, but may not have all the relevant
data from its neighbouring platforms (e.g., B and C) due to
communication lag. Platform A must wait to be informed of
any timestamps of being observed by platforms B or C. This
delays augmentation, local fusion, marginalisation, and the
generation of packets to send to the server. If we presume a
maximum communication delay of tL, then we may process
pose estimates for all timestamps ti < th (= tk − tL), as
shown in Fig. 5(a). Once fusion of egocentric data has taken
place, all nodes not associated with inter-robot measurements

1In practice IMU and GPS data are not sychronised with odometry. We
perform time-alignment, by interpolating over the odometry data, to generate
pose estimates at specific timestamps. These and other implementation
issues will be detailed in a forthcoming article.

(a) Lagged local fusion

(b) Marginalise

Fig. 5. Local construction of a Markov chain of pose estimates for
the timestamps of egocentric (clear) and inter-robot (shaded) data. For
platform A, the inter-robot timestamps include measurements by A
and of A. The latter incur a delay tL. Known timestamps that cannot
yet be processed are shown dashed. Before sending states to the central
server, the non-shaded states are eliminated by marginalisation. (Note,
the last node before th must be retained to permit augmentation of
future nodes.)

Fig. 6. A three-element Markov chain decomposed about node x2

into marginal and conditional components.

are eliminated by marginalisation, as shown in Fig. 5(b). At
this point, the Markov chain up to xi may be sent to the
server.

Since estimation is performed online, and the Markov
chain grows indefinitely, it is not transmitted to the server
in a single block, but is sent incrementally in packets.
Packets are formed by separating the Markov chain into
segments according to “product rule decomposition” as fol-
lows. A Markov chain {x1,x2,x3} can be separated into
p (x1,x2) p (x3|x2), as shown in Fig. 6. In information-form,
denote the original Markov chain as

ŷ =

 ŷ1

ŷ2

ŷ3

 , Y =

 Y11 Y12 0
YT

12 Y22 Y23

0 YT
23 Y33

 , (10)

and the decomposed components are

ŷm =

[
ŷ1

ŷm
2

]
, Ym =

[
Y11 Y12

YT
12 Ym

22

]
, (11)

ŷc =

[
ŷc
2

ŷ3

]
, Yc =

[
Yc

22 Y23

YT
23 Y33

]
, (12)

where the marginal part {ŷm,Ym} is obtained by marginal-
ising away x3; this operation only affects {ŷm

2 ,Ym
22}. The

conditional part {ŷc,Yc} is obtained by subtracting the
marginal from the original, such that ŷc

2 = ŷ2 − ŷm
2 and

Yc
22 = Y22 −Ym

22.
For the example in Fig. 5(b), suppose that the last packet

sent to the server ended with node xi−N . The next packet



Fig. 7. A packet is composed of a sequence of pose nodes, where the
first has the same timestamp as the end-state of the previous packet.
The first and last nodes are altered according to the conditional and
marginal components, respectively, of product rule decomposition.

(a) Connect new states

(b) Fuse inter-robot measurements

Fig. 8. Undirected graphical model of server-side state reconstruction
and fusion of inter-robot measurements.

will begin with xi−N and end with the latest node xi. The
nodes at the beginning and end of the packet are modified
to form conditional and marginal components, as shown in
Fig. 7. The marginal component xm

i is computed by applying
product rule decomposition to the local Markov chain at
xi. This component is also preserved in a separate local
cache to be used in calculating the next packet, and to later
facilitate server feedback, as discussed in Section III-E. The
conditional component xc

i−N is computed from the current
value of node xi−N by subtracting the xm

i−N component that
was cached when the previous packet was created.

Keep in mind that this set of states
{
xc
i−N , . . . ,xm

i

}
is

actually a sparse information-form estimate, which we shall
denote {ŷp,Yp}. The packet sent to the server, therefore,
consists of this state segment {ŷp,Yp}, the node timestamps
{ti−N , . . . , ti} and the platform identifier, e.g., {A}. (Note,
these packets may be sent or forwarded to multiple servers,
permitting decentralised estimation in terms of redundancy
and robustness. Packet forwarding is most cheaply accom-
plished by a having a spanning tree over the server platforms,
and propagating packets once along each path in the tree,
although schemes with only local topological knowledge [3],
[10] are also viable.)

D. Fusion at the Central Server

Packets from all platform accumulate at the central server,
which constructs a joint state estimate and fuses inter-robot
measurements. An information-form description of state re-
construction is shown in Fig. 8. New state packets connect
to states in the existing joint estimate by a trivial addition of

Fig. 9. Splicing server feedback into the local platform Markov chain.

connecting nodes (e.g., A2 = Am
2 +Ac

2) and extension of the
state vector for the new nodes (e.g., A3 and Am

4 ). Inter-robot
measurement fusion is carried out via the standard fusion
equations, see (6,7); this is also a small additive operation.

In practice, we implement reconstruction and fusion us-
ing the incremental sparse Cholesky operations described
in [13, Section 3.4]. The Cholesky-form shares the sparse
additive properties on the information-form, but also permits
efficient sparse recovery of mean and covariance compo-
nents. Furthermore, the entire marginal information content
of recent platform states is contained in the bottom right
of the Cholesky factor, enabling obsolete past states to
be eliminated by simply extracting out the relevant lower
submatrix.

Sparse moment recovery is performed to compute the
latest estimate for each platform, which allows platforms
to improve their local linearisation operations based on
server feedback. Correlation terms between platforms are
also cheaply attainable via the sparse inverse [4, Section
6.7.4] to facilitate data association.

E. Server Feedback

The latest server estimate for a given platform may be
spliced into the local platform Markov chain as illustrated
in Fig. 9. Suppose the local chain currently extends from
xi−N onwards, and a new estimate {ŷs

i ,Y
s
ii} for pose xi is

received from the server. The portion of the Markov chain
for x+

i is altered as

ŷ+
i = ŷi − ŷm

i + ŷs
i , (13)

Y+
ii = Yii −Ym

ii +Ys
ii, (14)

where {ŷm
i ,Ym

ii } refers to the component xm
i that was

cached previously during packet generation. With this alter-
ation, the Markov chain now extends from xi onwards, and
all older states are disconnected and discarded. The revised
chain contains all recent server information for improved
local model linearisation. Note, this server feedback is an
exact operation; it is consistent and does not double count
information.

F. Cost Analysis

The key costs of this algorithm are (i) local Markov
chain construction, (ii) incremental Cholesky construction
and fusion, (iii) communication bandwidth, and (iii) commu-
nication lag. For the following analysis, let n be the number
of states to define a momentary pose, let N be the number
of platforms in the team, and let d be the total number of
inter-robot measurements per second.



Fig. 10. Experimental robots.

a) Markov chain construction: This cost is isolated to
each platform and so is entirely decentralised. If platform A
obtains k motion measurements per second, and observes or
is observed by dA inter-robot measurements per second, the
per-second cost is O((k + dA)n

2).
b) Server-side reconstruction and moment recovery:

The cost of building the sparse Cholesky joint state, and
fusing inter-robot measurements, is not immediately depen-
dent on N . Rather it is a function of d, which typically
increases with N . This cost depends on the frequency and
detection pattern of inter-robot measurements, and requires
non-trivial analysis. Example-based costs will be detailed in
a forthcoming article.

c) Communication bandwidth: Each inter-robot mea-
surement is sent to the server, and is followed by two state
estimates for the two robots involved. Thus, the per second
cost is O(dn2).

d) Communication Lag: The first lag is tL, the max-
imum delay for one platform to inform another of its
timestamp. The next is tp, the time to compute a state packet
and send it to the server. The last is ts, the time to compute
the server estimate and send it back to the platform. Thus,
the total time for a platform to obtain an optimal estimate is
tL + tp + ts.

IV. EXPERIMENTAL SYSTEM

An experimental evaluation of the proposed algorithm was
carried out on a team of three Pioneer indoor robots (see
Fig. 10). Each robot is equipped with wheel encoders for
odometry and SICK scanning lasers for range-bearing mea-
surements. One robot also has an ISIS inertial measurement
unit. However, for the purposes of emulating a heterogeneous
system, the robot sensing was processed and limited as
follows.

1) Platform A uses its laser to perform scan-matching-
based localisation from an a priori map. It also uses
this laser to make range-bearing measurements of the
other robots.

2) Platform B uses its laser solely to make range-bearing
measurements of the other robots.

3) Platform C does not use its laser. It uses the yaw
gyroscope of its IMU to measure heading.

Fig. 11. Most recent pose estimates at server (blue) and on each
platform (red) for platforms A, C and B (left-to-right), shown with
2σ uncertainty ellipses. The ground-truth vehicle paths for a short
period before and after these poses is shown in black.

All robots use their odometry for motion measurement.
Platforms A and B perform feature extraction on their laser
data to generate range-bearing observations of other robots.
Data association is managed by auxiliary means and is
assumed known. Platform C is effectively blind, but has a
higher quality motion model due to the gyroscope. While
ground-truth is not available, it is approximated by recording
scan-matching-based poses of platforms B and C, which
provides sub-centimetre accuracy.

The aim of this experiment is to demonstrate the transfer
of pose information from a well-localised robot to one that
has no localisation capability at all. We do not discuss tuning
parameters, consistency or estimate quality since our filter
is optimal, and the resultant estimate is the same as for a
centralised EKF given the same information.

A. Results

The estimate held by the server incorporates all available
information received so far, both egocentric and inter-robot
data for all platforms. However, this information is lagged,
and each platform can generate a more recent pose estimate
for itself, albeit without integration of the latest inter-robot
measurements. An example of lagged optimal estimates and
current local estimates, for a given moment in time, is shown
in Fig. 11.

The estimate errors for platform C are shown in Fig. 12.
This robot, and also platform B, have no ability to localise
from the map, and would exhibit unbounded error growth
if travelling in isolation. However, the range-bearing ob-
servations made by platforms A and B transfer the pose
information of platform A directly or indirectly to platform
C, so that it exhibits bounded pose uncertainty.



(a) Estimate error in x-axis (m)

(b) Estimate error in heading (rad)

Fig. 12. The estimate error of platform C is bounded with time, as
shown by the 2-σ uncertainty bounds. This demonstrates a transfer of
pose information to platform C from platform A.

V. CONCLUSION

This paper presents an efficient algorithm for cooperative
localisation, wherein fusion of egocentric data is decen-
tralised and fusion of inter-robot measurements is performed
on a central server. The server is easily decentralised by
duplication if robustness is required. Since motion data tends
to be very high bandwidth, this approach minimises com-
munications costs. The resultant pose estimates are optimal,
in the same sense as an EKF, and it is possible to splice
server estimates back into the local platform Markov chains
in a consistent manner. The ability of the algorithm to share
pose information in a robot team, and in particular to transfer
localisation capabilities to a platform that does not possess
adequate sensing, is demonstrated by a simple experiment
with indoor mobile robots.

In a forthcoming article we will detail the many subtle
issues involved in implementing this algorithm on a real
system. We will also provide a cost analysis for the server-
side Cholesky factor operations—state reconstruction, inter-
robot data fusion and moment recovery—for robot teams
of various sizes and with various patterns of inter-robot
observations.

In future work we plan to investigate efficient mechanisms
for revising linearisations of process and observation models,
especially estimates of past motion steps. These revisions can

be significant if the state estimate includes static or slowly
varying parameters, such as IMU bias estimates, that are
sensitive to long-term linear approximations.
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