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Abstract— This paper presents a decentralised particle filtering
algorithm that enables multiple vehicles to jointly track 3D fea-
tures under limited communication bandwidth. This algorithm,
applied within a decentralised data fusion (DDF) framework,
deals with correlated estimation errors due to common past
information when fusing two discrete particle sets. Our solution is
to transform the particles into Gaussian mixture models (GMMs)
for communication and fusion. Not only can decentralised fusion
be approximated by GMMs, but this representation also provides
summaries of the particle set. Less bandwidth per communication
step is required to communicate a GMM than the particle
set itself hence conversion to GMMs for communication is
an advantage. Real airborne data is used to demonstrate the
accuracy of our decentralised particle filtering algorithm for
airborne tracking and mapping.

I. I NTRODUCTION

This paper presents an application of non-Gaussian, non-
linear decentralised data fusion (DDF) with particles for plat-
forms such as unmanned aerial vehicles (UAVs). Real airborne
data is used to demonstrate the accuracy of our decentralised
particle filtering algorithm for airborne tracking and mapping.

Flight vehicles can survey large areas in a short time
especially compared to ground vehicles. However, these vehi-
cles experience aggressive dynamics including excessive roll
rates and extreme flight speeds which affect sensor pointing
direction. This causes features to be observed for only a
few frames. However, multiple vehicles offer the advantage
of large numbers of observations at various angles resulting
in increased accuracy for tracking and mapping. Sharing
information and fusing estimates between platforms using
a decentralised architecture ensures modularity, robustness
and scalability [1]. Scenarios where this application are of
use include; environmental monitoring, bush fire-fighting and
search and rescue [2].

The flight vehicles shown in Figure 1 are equipped with
monocular visual sensors. The observation model is therefore,
bearing/elevation-only and cannot be modelled as Gaussian.
Multiple observations from different poses would be required
for recursive triangulation to obtain a Gaussian observation
likelihood. As observations are few, non-Gaussian represen-
tations are more suitable, in which particle filters are ideal.
Furthermore, Hendbyet al. [3] show that particle filters out-
perform methods based on linearisation such as the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF)
particularly if the initialisation error is large.

Fig. 1. Two Flight Vechicles: (Brumby Mk3 aircrafts)

Extensive research on particle filters has resulted in fast non-
linear, non-Gaussian operations for Bayesian filtering [4]–[6].
Other representations for general recursive filtering considered
in the literature include grid-based techniques [7], Gaussian
Mixture Models (GMMs) [8] and Parzen representations [9].
Grid based representations are not compact and do not scale
well with dimension compared to particles. GMMs and Parzen
representations require an approximate observation likelihood
transformation from the sensor space to Cartesian space and
result in a multiplicative increase of parameters at every
local update, unlike particle filters. Here, we show a practical
implementation of DDF using particle filters.

In a DDF framework, each platform runs its own local
filter and communicates information to other nodes in the
neighbourhood. Incoming information is fused with the local
state to produce a global state of the world. There are three
basic constraints to a DDF system [1] which are:

1) There exists no single central fusion centre and no node
is central to the successful operation of the network.

2) Communications are kept on a strictly node-to-node
basis.

3) There is no global knowledge of the network topology.
The advantages imposed by these three constraints include
modularity, scalability, survivability and increased robustness.
As nodes in a DDF system operate independently and commu-
nicate locally, an operating failure in a node would not affect
integrity of the operation of surviving nodes. As knowledge
of the global network topology is not required by a node, the



system can be scaled by simply connecting new sensing nodes
to the system.

The problem encountered in the application of particle
filtering in DDF is dealing with correlated estimation errors
due to common past information between two discrete particle
sets, in order to achieve accurate fusion results. Our solution
is to transform the particle set to a Gaussian Mixture Model
(GMM) for fusion. GMMs maintain summaries of the rep-
resentation and provides a fusion method that considers the
common information issue. As GMMs requires less “floats”
to store its components in comparison with the particle sets,
communicating the distribution as a GMM provides the added
advantage of reduced bandwidth requirements. Transforma-
tions to GMMs also smooth and regularise the sample set,
allowing the particles to be distributed more evenly.

The paper is organised as follows: After presenting some
related work (Section II), a generalised DDF node is de-
scribed in Section III showing how common past information
is maintained in a node. Section IV explains the problem
with accounting for common past information in decentralised
particle filtering. The algorithm of performing consistentDDF
on particle filters is then introduced. In Section V, experimen-
tal results are presented to demonstrate the accuracy of the
algorithm for airborne tracking and map building. Section VI
concludes and presents future directions.

II. RELATED WORK

A scalable Gaussian based DDF architecture has been
successfully implemented on UAVs by Nettleton [10], using
a Kalman Filter and its Information form. Local and com-
municated information was fused asynchronously via additive
information matrices. However, this methodology does not
lend itself to extensions for non-Gaussian distributions.

Rosencrantzet al. [11] and Ihleret al. [12] demonstrated
DDF using non-Gaussian representations but did not con-
sider accounting for common information. Ihleret al. ap-
plied a message-passing estimation technique known as non-
parametric belief propagation based on a generalisation ofpar-
ticle filtering in sensor networks. These messages are estimates
of the location and uncertainty of the sensor nodes themselves,
represented as either samples or analytical functions. Our
application differs from Ihler et al.’s as it is features in the
environment rather than sensor locations that is estimatedand
tracked. Rosencrantzet al. decentralised a standard particle
filter by communicating and fusing the most informative
subsets of samples. The algorithm was applied on indoor
mobile robots playing the game of laser tag.

III. D ECENTRALISEDNODE STRUCTURE

The operations in a decentralised node is illustrated in Fig-
ure 2. In a DDF system, each platform makes an observation
over which a likelihood is generated. Data association is then
performed with existing local filter tracks where either fusion
or track initialisation takes place. Each local filter undergoes
a standard cycle of a local observation update (multiplication
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Fig. 2. Flow chart of the operations performed in DDF. Local filters update
observation likelihoods from local sensors and fuse information received from
channel filters. Channel filters maintain a record of common information
between two nodes.

of prior and likelihood) and prediction (convolution of prior
with process model).

At set times, the local particle sets are then transformed
into a more compact representation and communicated to
neighbouring nodes in the network via the channel filters [1].
The channel filter also receives information from neighbouring
nodes. When this occurs, data association is performed. If
associated to a track, the received information is fused after
common past information is removed. The common informa-
tion at the channel filter is also updated with the received
information.

A. Common information

In order to perform DDF consistently, new information
has to be recovered from the received estimate by removing
common past information [13]. Figure 3 shows how common
informationP (xk|Zi

⋂

Zj) arises.
At time (a), Nodei makes an observationZi, of a feature,

updates the local filter resulting in a posteriorP (xk|Zi), and
sends its estimate to Nodej, which instantiates the filter
for this target. This communicated estimateP (xk|Zi) also
becomes the common informationP (xk|Zi

⋂

Zj), between
these two nodes. At (b), new observations are updated at
Nodes i and j. Hence at (c), Nodej’s feature estimate is
P (xk|Zi

⋃

Zj), a combination of information from Nodei at
time (a) and information from local updates at Nodej at time
(b).

To avoid errors arising from correlations, the common past
information has to be removed from the estimate prior to
fusion through a division so that at (d), the estimate at both
Nodes i is based only on “new” information from Nodej.
Hence, at (d) the common information is now what Node
j communicated at step (c). The fusion between two nodes
amounts to a division (shown in (c) of Figure 3 operation to re-
move the common information and a multiplication [14]which
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Fig. 3. How common information arises from the network is shown.
Communication of estimates (indicated by arrows) are from Nodei to Node
j at (a) and vice versa at (c). At (c), the estimate communicated contains
past information sent from Nodei . This is information about observations
updated at Nodei in time (a). This common information has to be removed
by division so only “new” information is fused at Nodei to avoid double
counting.

is:

P
(

xk|Zi

⋃

Zj

)

∝

P (xk|Zi) P (xk|Zj)

P (xk|Zi

⋂

Zj)
(1)

Obtaining a mathematically consistent and tractable formula-
tion of this division operation is the problem for decentralised
particle filtering which is explained in Section IV-A.

IV. D ECENTRALISEDPARTICLE FILTER ALGORITHMS

Particle filters are a Monte Carlo estimation method based
on importance sampling, adapted to sequential filtering for
dynamic systems [15]. The probability distribution of the state,
is represented by particles at a given moment in timek, as a
set of weighted samples{x(i)

k , w
(i)
k }N

i=1, such that the density
is approximated by an empirical estimate,

P
(

xk|Z
k
)

≈

N
∑

i=1

w
(i)
k δ

(

x
(i)
k

)

(2)

whereδ (·) is the Dirac delta function.
The basic particle filter has two key weaknesses which

hinder efficient application to many estimation problems. The
first is sample impoverishment, where, during resampling,
certain particles are selected multiple times and others not at
all, thereby reducing the total number of independent samples.
The second weakness is an inability to adequately explore the
state-space if the support of the prior distribution has little
overlap with the likelihood function. The solution appliedin
this paper is to fit mixture models to the samples [6], which, is
a form of regularisation. Mixture models additionally provide
a means to perform DDF as well.

A. Issues with fusing particle filters in DDF

The division operation (Equation 1) can be performed
analytically with Gaussian representations for tree-connected

networks. If the correlation between the estimates to be fused
is unknown, a covariance intersect filter can be applied [13].

However, for particle filters, the problem that occurs is
fusing two particle sets directly . There is only support for
an infinitesimally small interval at the particle. Elsewhere
the value of the particle is zero. Hence, there is no overlap
between samples even in the same space. Unless two samples
lie exactly at the same spot, multiplication between the two
sample sets would result in zero as shown in Figure 4. For
example, the multiplication of the first sample of set 1 with
the first sample in set 2 isδ(x − 0.5)δ(x − 1) = 0.
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Fig. 4. Samples from one particle set do not have the same support on the
space as samples from another set. The particle at 0.5 m from Set 1 will be
multiplied by a value of zero at 0.5 m from Set 2 because there isno support
at that point at Set 2.

Rosencrantzet al. [11] performed fusion on particle filters
by adding the most informative subset of samples from two
nodes together. This method is mathematically inconsistent
with Equation 1 and common past information is not ac-
counted for as a division operation cannot be performed on
discrete samples for the same reasons as multiplication.

B. Fusion solution

The solution applied to accommodate fusion is a transfor-
mation of each particle set to a continuous distribution such
as Gaussian mixture model (GMM) for the fusion process. In
[16], we showed that GMMs are preferred compared to Parzen
distributions because the fusion method is less computationally
expensive although the method for fusing Parzen representa-
tions [17] is more accurate. It was shown in [16] that GMMs
require less bandwidth per communication step compared to
particles, hence, we summarise the particles to GMMs prior to
communication. The conversion to a Gaussian mixture model
or Parzen representation is the most computationally complex
process. Should a faster way of conversion be achieved, Parzen
representations may be a more desirable option.

1) Gaussian Mixture Models:A Gaussian mixture model
for a random variablex is:

P (x) =

n
∑

i=1

γiGi(x;µi,Σi) (3)

where x is in the domain ofx, Gi, is the ith Gaussian
component, andγi are the weights where

∑n
i=1 γi = 1. The

multivariate Gaussian distribution of the statex with meanµ
and covarianceΣ is defined as:

P (x) =
1

(2π)n/2|Σ|1/2
exp− 1

2
[x−µ]T Σ

−1[x−µ] (4)



2) Conversion to a continuous distribution:The method of
converting to a continuous distribution (shown in Figure 5)
is based on Musso [6] where each sample is converted to a
kernelKh(x):

Kh(x) = hDK(x) (5)

whereD is the number of dimensions,K(.) is the rescaled
kernel density andh > 0 is the window or scaling parameter.
The kernel selected is Gaussian with

h = (
4

D + 2
)eN−e (6)

wheree = 1
D+4 , andN is the number of samples.
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Fig. 5. Conversion of particles to a continuous distribution by placing
Gaussian kernels over each particle

Communicating the continuous distribution in this form
would be slightly worse than communicating the sample set
itself as there is a kernel for each particle. Hence, approximat-
ing this distribution by a more compact one such as GMMs
is more desirable. West’s joining algorithm [18] is applied
to merge pairs of components from the sum of Gaussian
kernels (

∑n
i=1 γiGi(x;µi)) converted from the particles, suc-

cessively until the desired level of component reduction has
been achieved. The distance measure utilized to gauge the
similarity of componenti and componentj of the GMM is a
Mahalanobis-type distance measure:

d2
ij =

γiγj

γi + γj
(µi − µj)

T Σ−1(µi − µj) (7)

whereµ is the state vector of the component,Σ is the mixture
covariance matrix andγ is the component weight.

3) The fusion method:This method requires that first the
local particle set be also converted to a GMM. Fusion is then
performed using a pairwise component covariance intersect
(CI) update [19] with the communicated GMM. Illustrated
in Equations 8,9 and 10 are the CI operations whereΣij ,
µij and γij are the new covariance, mean, and weight of
the component after fusion between theith component of the
local estimate and thejth component of the communicated
estimate. A CI weighting parameterω is selected to minimise
the determinant of the result. The new particle set is then
obtained by sampling from the fused GMM.

Σ−1
ij = ωΣ−1

i + (1 − ω)Σ−1
j (8)

µij = Σij(ωΣ−1
i µi + (1 − ω)Σ−1

j µj) (9)

γij = γi × γj × W (10)

whereW = 1
(2π)n/2|K|1/2

exp{− 1
2 (µi − µj)

T
K

−1(µi − µj)}

andK = Σi

ω +
Σj

1−ω

V. EXPERIMENTAL RESULTS

In this application, two flight vehicles undergo trajectories
approximately 100 m above ground with average flight speeds
of 144 km/hr. The flight vehicles start tracking at opposite
ends of the trajectories. The feature extraction rate from
a vertically-mounted monochrome camera is 25Hz. White
features of 2×2m placed on the ground, shown in Figure 6
are tracked using our decentralised particle filtering algorithm.
The range-cutoff used when initialising a new filter is 350
m shown in Figure 7. Every second, each alternate platform
communicates summaries of the sample set to each other. This

Fig. 6. Snapshots of the environment where the white featuresare tracked
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Fig. 7. Initialisation of a particle filter with bearing and elevation of 0 degrees
and 1 degree standard deviation.

application is part of the second phase of the Autonomous
Navigation and Sensing Experimental Research (ANSER II)
project which aims at demonstrating DDF techniques for
general non-Gaussian, non-point feature information. Such
information includes air-borne and ground-based observations
of natural features and targets from both imaging and range
sensors, together with information from databases and human
operators.

The system process model used for prediction was the
Integrated Ornstein-Uhlenbeck process [7] which allows for
bounding of the Brownian velocity over time. This prevents
excessively large motion that can occur when the features is
not observed for an extended period. The observations (zk) are
a sequence of bearing (ϕ) and elevation (ϑ) measurements:

zk = [ϕ ϑ]T =

[

tan−1(yk/xk)

tan−1(zk/
√

x2
k + y2

k

]

+ vk (11)

wherevk is the measurement noise.

A. Data Association

In our operating environment shown in Figure 6, fea-
tures are sparse, unlike in urban environments. Hence, robust



Fig. 8. GMM Fusion results from Node 1. 34 features were tracked.

Fig. 9. Centralised Solution. 34 features were tracked.

data association such as Joint Probabilistic Data Association
(JPDA) [20] is not applied. Instead a simple validation method
using the Malahanobis distance [21] is used to correctly match
local observations and received estimates to local tracks.

B. Analysis of Results

The final post-processed results are shown from Figures 8
to 11. Observations from both platforms were communicated
at 25Hz to obtain the centralised solution. To measure the
performance of our algorithm, the fusion solution is compared
to the centralised one as we assume that the centralised
solution is the most optimal.

To show that the decentralised solution is closer to the cen-
tralised result in comparison with platforms operating alone,
a relative entropy or Kullback-Leibler(KL) divergence [22]
is used. The KL divergence between two probability mass
functionsp(x) andq(x) is defined as [22]:

D(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)
(12)

Fig. 10. Platform 1 StandAlone Result. 31 features were tracked.

Fig. 11. Platform 2 StandAlone Result. 31 features were tracked.

The relative entropy is always non-negative and is zero if and
only if p = q.

Figure 12 illustrates the average KL-Divergence results for
three features which are the features numbered 2,3,4 on the
centralised solution map. These features were selected as they
were observed for the longest period of time by both vehicles.
As both platforms start on opposite sides of the trajectory,a
feature track initialised at one platform will be initalised at
the other platform using the GMM fusion solution. However,
without fusion, the track for this feature will only be initialised
at the second platform when its sensor detects it. At this
stage, the uncertainty of the feature for the first platform
would have increased, while for the GMM fusion solution,
communicated updates would reduce the uncertainty of the
feature. The decentralised nodes have lower KL-divergence
values and hence exhibit performances closer to the centralised
solution than platforms operating alone.

To show that common past information is accounted for, the
distribution of the GMM fusion solution cannot be more com-
pact than the centralised solution. An Entropy measure [23]
is used to determine the information content of a distribution.
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The more compact a distribution, the lower the Entropy value.
Figure 13 shows the Entropy results averaged over same three
features, (Features numbered 2,3,4 on the centralised solution
map), and confirm that the entropies of the decentralised
solutions are higher than the centralised one but less than their
coresponding stand alone solutions as time increases. Hence,
the decentralised solutions have less compact distributions
compared to the centralised one.

VI. CONCLUSION

This paper presented an algorithm for decentralised particle
filtering to jointly track 3D features under limited com-
munication bandwidth. Here, the particle distribution was
transformed to GMMs for communication and fusion. Our
experimental results have demonstrated the accuracy of our
decentralised particle filtering algorithm. Sharing information
between platforms increases the number of features tracked
and the compactness of each particle filter.

Areas for future work is the development of consistent fu-
sion methods for GMMs and faster methods of transformations
form particles to GMMs. Future work will also include a
demonstration of decentralised particle filtering using vision
sensors on airborne vehicles, ground vehicles and stationary
ground nodes.
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