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Abstract— This paper presents a new technique for sparsifica-
tion of the information matrix of a multi-dimensional Gaussian
distribution. We call this technique Conservative Sparsification
(CS) and show that it produces estimates which are consistent
with respect to an optimal filter. This technique was applied to
the Simultaneous Localisation and Mapping (SLAM) problem,
and compared with two existing sparsification approaches;
the Sparse Extended Information Filter (SEIF) and the Data
Discarding Sparse Extended Information Filter (DDSEIF).
Simulation demonstrates that CS is a consistent approach
and provides a tighter upper bound than existing conservative
methods.

I. INTRODUCTION

The probability density function (pdf) of a Gaussian
distribution is characterized by two moments, its mean (µ)
and covariance (Σ). A Gaussian may also be expressed using
the canonical form (or information form) that specifies the
information matrix Y = Σ−1 and information vector y =
Yµ. The sparsity pattern of Ycorresponds to the conditional
dependency structure of the underlying distribution. This
pattern can be used to generate a graphical model which
depicts the conditional relationships of the pdf. An example
of this mapping is shown in Figure 1.

If a particular estimate contains very few conditional
dependency links, then the graphical model and the infor-
mation matrix for this estimate is sparse. Sparse estimation
provides two main advantages over a dense representation;
the memory required to store a sparse matrix is lower and
algorithms can be designed to exploit sparsity and thus
perform much faster.

One such problem which can benefit from sparsity in
the information matrix is the Simultaneous Localisation and
Mapping (SLAM) algorithm. Using an Extended Information
Filter (EIF) for SLAM is advantageous as the update step
is constant rather than quadratic in complexity. However,
marginalisation can induce off-diagonal elements in the
information matrix which can greatly reduce the efficiency of
the filter. Thrun et. al. [1] showed that by selectively deleting
these off-diagonal elements the efficiency of the filter could
be retained. The process of selectively setting off-diagonal
elements to zero is called sparsification.
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Fig. 1. Example of mapping from information matrix (a) to equivalent
graphical model (b), a black square indicates nonzero elements in the
information matrix which correspond to conditional dependency links in
the graph.

This paper develops a new approach to sparsifying the
information matrix called Conservative Sparsification (CS).
This method allows any off-diagonal element in the infor-
mation matrix to be set to zero, while guaranteeing that
the resulting distribution is consistent with respect to the
original distribution. Consistency allows the estimate to be
used in future Bayesian updates without the result becoming
overconfident. The problems of data association and model
linearisation are not going to be addressed by this paper. This
paper uses simple heuristics to decide which links to remove,
since link selection is not the primary focus. The interested
reader is directed to [2] for some good approaches to this
problem. Developing a more principled theory with regard
to good link selection for CS remains as future work.

The outline of this paper is as follows; Section II describes
the SLAM problem and previous approaches to sparsifica-
tion. Section III discusses consistency for a Gaussian pdf,
formulates the CS problem and describes some properties
of CS. Section IV outlines the results of a simple SLAM
simulation with respect to accuracy and consistency.

II. BACKGROUND AND RELATED WORK

This section describes the SLAM problem and then several
existing sparse methods.

A. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the
problem of a robot estimating its own location using esti-
mates of its motion while also generating a map of landmarks
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Fig. 2. Graphical model for the SLAM predict step. State x1 is predicted
forward to a new state, x2. x1 is then marginalised away, resulting in new
non-zero links being created.

which it observes in its environment. A key feature of SLAM
is that the robots location and landmarks are estimated
jointly. The SLAM problem has a direct interpretation as
a graphical model, the robot state at each time instant being
a single node, while each landmark is also a single node.
Links between the nodes represent condition dependency re-
lationships. Figure 2 shows a graphical model interpretation
of the SLAM problem.

The SLAM problem can be formulated in such a way that
it is naturally sparse [3][4]. A graphical model of the sparse
SLAM problem can be seen in Figure 2(a). This exploits
the fact that landmarks are conditionally independent if we
maintain estimates of all the robot poses. Unfortunately,
the requirement to store a state estimate for every robot
pose results in a memory footprint that grows linearly. This
either requires the filter to be eventually halted or that some
of the robot poses must be marginalised. Marginalisation,
which is the process of removing a state from the estimation
scheme, results in an effect known as fill-in. Figure 2(b)
demonstrates the effect of fill-in for the SLAM problem. Here
we see that previously zero off-diagonal terms have been
added to the system (green links). The number of links after
the marginalisation step is greater than existed beforehand,
thus the problem has become less sparse. Marginalisation is
explored in further detail in [5]. The current pose SLAM
problem, where only the latest pose estimate is stored in the
state vector, is a special case of the SLAM problem. Figure
2(b) shows that this approach will always result in a densely
connected system. In this paper, we shall address the current
pose SLAM problem, for which the optimal graph is dense.

Two common approaches to sparsification exploit the
observation that links connecting robot poses to distant land-
marks tend to have smaller values. Thrun et. al. [1] proposed
a method called Sparse Extended Information Filters (SEIF)
which sets the smallest of these links to zero. SEIF is
discussed in detail in Section II-D.1. The Thin Tree Junction
Tree by Paskin [6] also imposes sparsity by thinning cliques
of states. Both of these approaches are not guaranteed to
produce consistent estimates.

Covariance Intersection (CI) [7] is a method for data
fusion which can be used to solve the SLAM problem
[8]. This approach estimates each landmark and robot pose

independently, and does so in a manner which is guaranteed
to be consistent, but significantly inflates the uncertainty for
the state estimates. CI is not considered further as the other
approaches examined in this paper have better performance.

Walter et. al. developed another method that we call
the Data Discarding Sparse Extended Information Filter
(DDSEIF) [5] which selectively discards motion observations
to induce sparsity, this method is described in Section II-D.2

B. Consistent Estimation

If we wish to estimate the mean (â) and covariance (A) of
a Gaussian random variable, with true state (ā) and true error
covariance Ā = E[(â− ā)(â− ā)]. An estimate is considered
consistent if,

E[â− ā] = 0, (1)
A � Ā. (2)

Here the symbol � implies the result of A − Ā is positive
semi-definite. This definition of consistency is used by the
Covariance Intersection algorithm [7], it is also used by Bar-
Shalom [9, p. 237].

C. Covariance Selection and Max-Det

An approach closely related to the method used in this
paper is Covariance Selection. A covariance is desired which
is the closest to a problem-specific symmetric matrix which
may have unknown elements. The resulting matrix may have
some sparsity constraints imposed on its inverse covariance
(information matrix). The closest matrix is measured using
a loss function. Typical loss functions are the Kullback-
Leibler Divergence (KLD) or the L2 norm [10]. Covariance
Selection problems are not concerned with consistency, and
only attempt to minimise the loss function subject to equality
constraints. Therefore Covariance Selection solutions pro-
duce inconsistent estimates.

If a covariance selection problem uses only a KLD loss
function then it can be written in the form of a MAXDET
problem. Boyd et. al. have a solver [11] which can solve
this problem in O(n2.5m2), where m is the number of free
parameters and the size the matrices are n×n. Note that for
dense matrices this cost is O(n6.5).

D. Methods examined in this paper

This section describes the methods which CS will be
compared to in the experimental section of this work.

1) SEIF: The Sparse Extended Information Filter was
first proposed by Thrun et. al. and applied to the SLAM
problem [1]. Their approach allowed the deletion of links
connecting the robot state to the set of landmarks. Although
this approach allows for constant time prediction steps, it
produces inconsistent estimates [12].

SEIF splits landmarks in its graph into three distinct sets.
The first set are all nodes which are currently not neighbours
to the robot pose, denoted by Y 0. The second set contains
all the nodes which are to be disconnected from the robot
pose, denoted by Y − . The last set is the landmarks which
are to remain connected to the pose, denoted by Y +. SEIF’s
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Fig. 3. Sparsifying link between xi and l2 using SEIF approach, this
link was induced through marginalisation of a prior state. Green links are
induced by SEIF. The set Y 0 contains landmark l3, while the set Y −

contains l2, finally set Y + contains the active landmarks l1, l4 and l5. Fill-
in has occurred between the sparsified set Y − and the active set Y +. After
this operation, the robot state has a reduced number of connections.
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Fig. 4. The optimal approach is shown in (a) and (b), while the DDSEIF
approach is shown in (c) and (d). In this example the robot predicts its state
forward and then observes two new landmarks (l5 and l6) and a previously
surveyed landmark, l4. The graph in (b) shows the network after the state
xi has been marginalised and has formed a large clique. In (c) the DDSEIF
algorithm chooses to discard the motion update (represented by an orange
link). Upon marginalising xi in (d) landmarks l1 and l2 are not connected
to state xk . DDSEIF has induced sparsity by ignoring a motion observation.

approach allows fill-in to occur between the sets Y + and
Y −, while the nodes in Y 0 are completely unaffected by
the operation. Although large amounts of fill-in can occur,
the approach does indeed reduce the connectivity of the robot
pose. Fig. 3 shows the SEIF algorithm applied to an example
graph.

A SEIF implementation will only attempt to sparsify when
the number of links connected to the robot pose reaches a
predetermined threshold. SEIF then removes links to ensure
that the number of connections to the robot pose is reduced
below the threshold. Weaker links are chosen for deletion
first. This approach tends to disconnect landmarks that are
further away from the robot [1].

2) DDSEIF: The Data Discarding Sparse Extended Infor-
mation filter approach by Walter et. al. [5] uses the insight
that by selectively choosing to discard odometry data, as used
by the vehicles prediction step, the sparsity of the graph can
be improved. The algorithm also requires the robot to re-
observe a landmark in order to reinitialise the robot pose.

In the case of the current pose SLAM problem, DDSEIF
begins by observing that maintaining the most recent motion

prediction step will result in the number of links to the
robot state rising above a predefined threshold. This mo-
tion observation is then discarded, the previous robot pose
is marginalised into the landmarks and the robot pose is
reinitialised through a landmark re-observation. An example
of this process is given in Fig. 4.

III. CONSERVATIVE SPARSIFICATION

A. Problem Statement

We wish to find a sparse representation of the multi-
dimensional Gaussian distribution N (ytr,Ytr), the new
approximate distribution will be of the form N (ysp,Ysp).
The problem is supplied with a set of links in Ytr which
are to be deleted in Ysp, and another set containing the
current sparsity pattern of Ytr which must be maintained.
The new distribution associated with Ysp must be consistent
with respect to the original distribution associated with Ytr.
The matrix Ysp must also be as close as possible to the
original matrix. We will also assume that Ytr is a consistent
estimate of the underlying random variables. Finally we will
ensure that the mean is unchanged:

Y−1
tr ytr = Y−1

sp ysp. (3)

We will approach this as a convex optimisation problem,
using techniques described in [13], [14] and [15]. This
problem is designed to ensure that the new covariance will
represent an upper bound on the original covariance. Thus
the approach is named Conservative Sparsification.

B. Problem Formulation

We choose to minimise the Kullback-Leibler Divergence
(KLD) as a measure of similarity between Ytr and Ysp

(with coincident means). The form of the KLD for multi-
dimensional Gaussian distributions with coincident means is
(where n is the number of dimensions),〈
Y−1
tr ||Y

−1
sp

〉
=

1

2

(
ln

(
det(Y−1

sp )

det(Y−1
tr )

)
+ tr(YspY

−1
tr )− n

)
.

(4)

If Ytr remains fixed and equal to our original distribution’s
information matrix, then we can construct a cost function
that will minimise the KLD;

f(Ysp) = tr(YspY
−1
tr )− log det(Ysp). (5)

Note that this is a convex function over the space of positive
definite matrices. Using the definition of consistency in
Section II-B, we have the consistency constraint,

Ytr −Ysp � 0.

Using the above equations and adding equality constraints to
enforce sparsity we have the following problem:

minimise tr(YspY
−1
tr )− log det(Ysp),

subject to:

Ytr −Ysp � 0

Yspij = 0 where (i, j) ∈ I ∪ J .



Let I be the set of indices which are to be set to zero and
let J include the indices of all the zero valued elements in
Ytr. Its important to note that after a CS sparsification, the
total number of non-zero elements in the information matrix
will always decrease. This problem can be formulated as a
MAXDET problem [11].

C. Problem Reduction
The above approach requires an expensive convex optimi-

sation step over all elements of the matrix to be performed.
This section gives a brief description of a problem reduction
approach, which allows only a subset of the matrix elements
to be modified while guaranteeing a solution to the full prob-
lem. The Appendix to this paper proves two key theorems
required for this approach.

We require that Ytr be partitioned as,

Ytr =

 B11 B12 0
BT

12 B22 B23

0 BT
23 B33

 . (6)

We also require that the sparsification constraints only effect
elements of B11. We can now marginalise the problem to
the Markov blanket of the sparsification operation, setting:

Ytr =

[
B11 B12

BT
12 B22 −B23B

−1
33 BT

23

]
. (7)

We now define the following notation; (A)ij accesses the ith
element and jth row of the matrix expression A. We show
in the Appendix, Theorem 1, that if we can solve a reduced
problem, with Ytr is as above, I entirely contained in B11

and the additional equality constraint:

(Ysp)ij = (−B23B
−1
33 BT

23)ij for all (i, j) ∈ J22. (8)

Where J22 is the subset of J contained in B22.
We can then transform the solution of the reduced problem

to the full solution:

Y∗
sp =

 B∗
11 B∗

12 0
B∗T

12 B∗
22 + B23B

−1
33 BT

23 B23

0 BT
23 B33

 , (9)

where, B∗ is the optimal solution for the reduced problem.
Theorem 2 states that if we choose to include the Markov
blanket of the sparsification in the reduced problem set, a
solution will always be found. However, if a set smaller than
the Markov blanket is chosen, then the reduced problem may
not have a solution. Also, if the structure in Eqn. 6 cannot
be found, then the reduced problem coincides with the full
problem.

The marginal projection B23B
−1
33 BT

23 is required for this
initial problem reduction. If it has already been computed
using a sparse solve (see [16] for sparse solving algo-
rithms) then the computation complexity for CS reduces
to O(k2.5l2). Where, k is the number of states inside the
Markov blanket and l is the number of non-zeros inside the
Markov blanket. Thus the problem complexity is bounded
by the size of the Markov blanket. For a large sparse matrix
where k << n, CS will approach constant time. Fig. 5
demonstrates the effect of performing CS on the problem’s
structure and the zero fill in characteristic of CS.
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(a) Graph before CS. Orange link to be sparsified. Box
indicates Markov blanket.
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Fig. 5. CS’s approach to removing link xi to l6. This link was
induced through fill-in after marginalising a prior state. CS has produced
no additional fill-in associated with its operation. Landmarks l4 and l5
lie outside the Markov blanket and are unaffected by the sparsification
operation. Note that choosing a set smaller than the Markov blanket is
not in general guaranteed to produce a feasible reduced problem.

IV. EXPERIMENTS

A SLAM simulation was designed to compare CS to DD-
SEIF and SEIF. A robot with a linear process model and
linear observation model was simulated moving through a
2-dimensional environment containing 20 stationary land-
marks. Linear models were chosen so that linearisation errors
would not effect the results, and so that a Kalman Filter (KF)
would be optimal for this simulation. The process model (Q)
and observation model (R) are shown below,

Q =

[
8.3 9.8
9.8 14.6

]
× 10−3,R =

[
4.5 2.4
2.4 2.7

]
× 10−4.

Consistency is measured after each data fusion step by
computing the minimum eigenvalue of the sparsity constraint
Ytr − Y. If the minimum eigenvalue is less than 0 then
the constraint is not positive definite and thus the filter is
inconsistent.

The robot performed current pose SLAM, and thus
marginalised its pose estimate at every time step. During each
run, the CS algorithm was called after 5 data fusion steps
to sparsify the current estimate. The CS algoirthm replicated
the sparsity pattern of DD-SEIF at each sparsity step. DD-
SEIF’s algorithm was called when the robot was linked to
more than 2 landmarks, while SEIF’s algorithm was called
when the robot was connected to more than 3 landmarks.

The simulation was ended when the robot had moved 200
times, resulting in 259 landmark observations. Each filter’s
performance was recorded after each data fusion step.

A. Results

Figure 6(a) shows that all of the sparse approaches main-
tained a similar number of non-zeros during the simulation.



This allows a fair comparison of the KLD between the
algorithms since each filter modeled a system with similar
complexity.

Figure 6(b) shows the KLD between the Kalman Filter and
each of the sparse approaches. CS maintains a smaller KLD
than DD-SEIF throughout the simulation, and thus is the
most accurate consistent sparse filter in this simulation. SEIF
is clearly the most accurate filter in this simulation, however
from Figure 6(c) we see that its minimum eigenvalue quickly
drops below zero, and it is thus inconsistent. Peaks in this
graph are due to sparsification steps increasing the KLD with
subsequent data fusion steps quickly reducing the KLD.

V. CONCLUSION

Conservative Sparsification is a new approach for sparsely
approximating multi-dimensional Gaussian distributions, en-
abling cheaper storage and faster inference. Approximations
by CS always represent an upper bound on the optimal
covariance, while leaving the mean unchanged. In sparse
systems where the marginal projections are readily available,
the cost of computing CS is bounded by the size of the
Markov blanket, and for very large, sparse matrices, this cost
is constant time. This paper has demonstrated CS for SLAM.
Our results show that CS provides a tighter upper bound than
existing conservative methods such as DD-SEIF. In future
work we will investigate principled link deletion strategies
and the application of CS to large-scale decentralised esti-
mation problems, such as cooperative localisation, distributed
tracking and sensor networks.

ACKNOWLEDGEMENTS

This work is supported by the Australian Centre for
Field Robotics and the Australian New South Wales State
Government.

APPENDIX

This appendix proves two key theorems which are vital for
the problem reduction described in Section III-B. We define
the following notation; (A)ij accesses the ith element and
jth row of the matrix expression A. Let the matrix Enm be
known as the indicator matrix, defined as:

(Enm)ij =


√

2, if (i 6= j) and
((n,m) = (i, j) or (n,m) = (j, i))

1, if (i = j)and(n = i)and(m = j)

0, otherwise.

We will also define a mapping from Rn to Sm×m (where
Sm×m is the set of real symmetric matrices):

F (x) = F0 +

n∑
i=1

xiEqp,where (q, p) ∈ Z (10)

where, Z is a set of indices in a m × m matrix space,
Eqp,F0 ∈ Sm×m and (F0)ij = 0 for all (i, j) ∈ Z .

We now define the CS problem:

arg min
Ysp

tr(YspY
−1
tr )− log det(Ysp)
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(c) Minimum eigenvalue of consistency constraint (Ytr−Y), a value
below zero indicates an inconsistent filter.
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Fig. 6. Results from experiment. Here we see CS (light blue Sparsity plot)
compared with DD-SEIF and SEIF



subject to:

Ytr −Ysp � 0

Yspij = 0 for all (i, j) ∈ I ∪ J ,

where, Ytr,Ysp ∈ Sm×m
+ , I contains the set of indices

which are to be sparsified, while J contains the set of indices
which satisfy (Ytr)ij = 0. Here Sm×m

+ is the cone of m×m
positive definite matrices.

We will also define another set of indices K, which
contains the indicies of all the elements which are to have a
nonzero value in the final solution K /∈ I ∪ J .

We can remove the equality constraints by performing a
parameterisation using Eqn. 10. Let,

Ysp = F (x)

= F0 +

n∑
i=1

xiEqp,where (q, p) ∈ K

and, F0 = 0.
We can now define the CS problem using the new param-

eterisation:

arg min
F (x)

tr(F (x)Y−1
tr )− log det(F (x))

subject to:

Ytr − F (x) � 0.

The Lagrange dual function for this problem is:

L(x,λλλ) =
tr(F (x)Y−1

tr )− log det(F (x))

+tr(λλλ(F (x)−Ytr)).
(11)

Using the Lagrange function we can form the first KKT
equation,

d

dx

(
tr(F (x)Y−1

tr )− log det(F (x))
)

+
d

dλλλ
(tr(λλλ(F (x)−Ytr)))

= F−1
tr − F−1

sp + Fλ.

(12)

where,

F−1
tr =

{
(Y−1

tr )ij for all (i, j) ∈ K
0, otherwise

(13)

F−1
sp =

{
(F (x)−1)ij for all (i, j) ∈ K
0, otherwise

(14)

Fλ =

{
(λλλ)ij for all (i, j) ∈ K
0, otherwise.

(15)

It is sufficient for the optimal solution to this problem to sat-
isfy the following equations (known as the KKT conditions):

F−1
tr − F−1

sp + Fλ = 0 (16)

Ytr − F (x) � 0 (17)
λλλ � 0 (18)

tr(λλλ(F (x)−Ytr)) = 0. (19)

The KKT conditions only hold under the assumption of
strong duality. Slater’s constraint states that a convex problem
has strong duality if its inequality constraints hold strictly.
For this problem, Slater’s constraint holds if there exists a
positive number ε, which satisfies the following (where I is
the identity matrix):

Ytr − εI � 0. (20)

Since this is true for any matrix as long as Ytr � 0, the
assumption of strong duality is valid for this problem.

Defining a Graph Cut: Consider a new operation, the CS
Graph Cut which can operate on any CS problem. This
operation splits states in the problem into two disjoint sets
of arbitrary size. The only constraint on a CS Graph Cut is
that the full set of sparsification indices I must be included
in only one of the sets. We can express this using matrix
partitions as below:

Ytr =

[
A11 AT

12

A12 A22

]
, F (x) =

[
A∗

11 A∗
12
T

A∗
12 A∗

22

]
,

where A11 contains the set of indices I. We will also define
another set of indices L, which is the set of indices which
satisfies,

(A12A
−1
22 AT

12)ij 6= 0.

We will define two sets of indices related to the cut. Let J11
be the subset of J which is contained in the cut A11, and let
K11 be the subset of indices contained in the cut A11. It is
important to recognise that the CS Graph Cut is not unique,
there may be many valid cuts, all that is required is that the
split is disjoint and indices I are entirely included in one of
the sets.

Finally we will define the mapping from Rt to Su×u:

G(x11) = G0 +

t∑
p=1

xpEi,j , (21)

where, (i, j) ∈ K11,E ∈ Su×u, u is the size of the graph
cut, and t is the number of free parameters in the cut, x11 ∈
Rt.

Theorem 1: 1 For any CS problem, choose a valid CS
graph cut for which the following problem is feasible.
Let

Ỹtr = A11 −A12A
−1
22 AT

12 (22)

(G0)ij =

{
(−A12A

−1
22 AT

12)ij for (i, j) ∈ L
0, otherwise

(23)

Now solve the problem (known as the reduced problem):

arg min
x11

tr(G(x11)Ỹtr
−1

)− log det(G(x11))

1Note that Theorem 1 is similar to the result in [2, Sect. 6.2] as both
show that the KLD can be computed locally. Our theorem differs, as we
show that the consistency constraint can also be optimised locally, and we
do not require our final solution to be a Junction Tree (which requires a
matrix ordering to be chosen and can cause fill in).



subject to:

Ỹtr −G(x̃11) � 0

Let x̃11 and λ̃λλ11 be the optimal solutions to the reduced
problem. We will then consider the optimal solution to the
full problem to be:

F ∗(x̃) =

[
G(x̃11) + A12A

−1
22 AT

12 A12

AT
12 A22

]
(24)

λλλ∗ = −Y−1
tr + F ∗(x̃)−1 (25)

Proof Outline: This proof will show that the KKT condi-
tions hold for the proposed solutions.

Proof: If x̃11 and λ̃λλ11 are the optimal solutions to the
reduced problem, then the following KKT equations hold.

d

dx

 tr(G(x̃11)Y−1
tr )

−log det(G(x̃11))

+tr(λ̃λλ(G(x̃11)−Ytr))

 = G−1
tr −G−1

sp + Gλ.

d

dx
(λλλ) = Fλ

= −F−1
tr + F−1

sp (26)

G−1
tr =

{
(Ỹtr

−1
)ij for all (i, j) ∈ K

0, otherwise
(27)

G−1
sp =

{
(G(x̃11)−1)ij for all (i, j) ∈ K
0, otherwise

(28)

Gλ =

{
(λλλ)ij for all (i, j) ∈ K
0, otherwise.

(29)

Where,

G−1
tr −G−1

sp + Gλ = 0 (30)

λ̃λλ11 � 0 (31)

tr(λ̃λλ(G(x̃11)−Ytr)) = 0 (32)
Ytr −G(x̃11) � 0. (33)

Also, a solution to the reduced problem must lie in its
domain. That is, the following must be true,

G(x̃11) � 0. (34)

Show that F ∗(x̃) � 0:
Using partition in Eqn. 24 and since G(x̃11) � 0 and
A−1

22 � 0 then,

G(x̃11) + A12A
−1
22 AT

12 � 0. (35)

Also,

G(x̃11) + A12A
−1
22 AT

12 −A12A
−1
22 AT

12 = G(x̃11) � 0,
(36)

which implies F ∗(x̃) � 0.
Show KKT Condition (Equation 16):

F−1
tr − F−1

sp + Fλ = F−1
tr − F−1

sp + (−F−1
tr + F−1

sp ) (37)

= 0, (38)

where the above has used Eqn. 25
Show KKT Condition (Equation 17):

−F ∗(x11) + Ytr =

−
[

F11 A12

AT
12 A22

]
+

[
A11 AT

12

A12 A22

]
= A11 −A12A

−1
22 AT

12 −G(x̃11))

= Ỹtr −G(x̃11))

� 0,

where F11 = G(x̃11) + A12A
−1
22 AT

12.
Show KKT Condition (Equation 18):
Ytr − F (x) � 0 ⇐⇒ F (x)−1 −Y−1

tr � 0,
therefore,

λλλ = F (x)−1 −Y−1
tr (39)

λλλ � 0. (40)

Show KKT Condition (Equation 19)

tr

(
λλλ

(
F ∗(x11)

−Ytr

))
= tr

λλλ
 G(x̃11)+

A12A
−1
22 AT

12

−A11


(41)

= tr
(
λλλ11(G(x̃11)− Ỹtr)

)
.(42)

Where λλλ11 is the top left block of λλλ. From Eqn. 30 we have

Gλ = G−1
sp −G−1

tr .

Decomposing λλλ11:

λλλ11 =

{
(Gλ)ij for (i, j) /∈ J11 ∪ K11

(λλλ0)ij for (i, j) ∈ J11 ∪ K11,

where,

λλλ0 =

{
(λ̃λλ)ijfor(i, j) ∈ J11 ∪ K11

0 otherwise.

Also, note that

(λ̃λλ(G(x̃11)− Ỹtr)))ij = (Gλ(G(x̃11)− Ỹtr))ij = 0,
(43)

for all (i, j) ∈ J11 ∪ K11.
Now, Eqn 42 becomes:

tr(λλλ(F ∗(x11)−Ytr) = tr((λλλ0 + Gλ)(G(x̃11)− Ỹtr))

= tr

 λλλ0

(
G0 + F0

+A12A
−1
22 AT

12

)
+tr(Gλ(G(x̃11)− Ỹtr))


= tr

(
λλλ0

(
0−A12A

−1
22 AT

12

+A12A
−1
22 AT

12

))
= 0,



where the above has decomposed the problem into matrices
based on the elements which are in or not in J11 ∪ K11

respectively. Then using Eqn. 43, 23 and 32, we have the
above result.

Since the KKT equations are satisfied, the proposed solu-
tion is a optimal.

Theorem 2: If the Markov blanket is wholly included
in one of the sets of a CS Graph cut, then the associated
reduced problem will always have a feasible solution.

Proof Outline: This proof first describes the inequalities
which can result in an infeasible solution. It then describes
a choice of the reduction which will always result in a
feasible solution. A problem is known as infeasible if there
are no solutions which satisfy the equality and inequality
constraints.

Proof: We denote a solution to the reduced problem
by, G(x̃11) = Ã11. The inequality for the reduced problem
corresponding to the consistency constraint is:

A11 −A12A
−1
22 AT

12 − Ã11 � 0 (44)

A11 −A12A
−1
22 AT

12 � Ã11 � 0. (45)

The subtraction of the term (A12A
−1
22 AT

12) reduces the
upper bound on the solution Ã11, if I ∩ L 6= ∅, then
it is possible that the problem will have no solution (i.e.
infeasible).

Exploiting Structure: Consider a matrix Ytr with the
following structure:

Ytr =

 B11 B12 0
BT

12 B22 B23

0 BT
23 B33

 . (46)

If we choose to reduce the problem so that Ã11 encom-
passes B11 and B22 (The Markov blanket of the equality
constraints contained in B11), then the above inequality
becomes:

[
B11 B12

BT
12 B22 −B23B

−1
33 BT

23

]
�
[

B̃11 B̃12

B̃T
12 B̃22

]
(47)

� 0. (48)

If this structure exists for a particular reduction choice,
then this problem will always have a feasible solution as
long as I is contained in B11, and L is contained in B22 .
A feasible solution is demonstrated below (where ε satisfies
the B11 � εI)

Ã11 =

[
εI 0
0 B22 −B23B

−1
33 BT

23

]
. (49)

This satisfies the equality and inequality constraints, the
inequality constraint is shown below:

[
B11 B12

BT
12 B22 −B23B

−1
33 BT

23

]
�
[
εI 0
0 B22 −B23B

−1
33 BT

23

]
(50)

� 0. (51)

Note that we cannot choose B̃22 = εI as the equality
constraints associated with L require off diagonal terms to
be non-zero.

Therefore, the reduced problem will always have a feasible
solution if the Markov blanket is included in the reduced
problem.
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