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Abstract

This paper compares and constrasts three different proba-
bilistic models for non-Gaussian, non-linear feature tracking,
when applied to multiple autonomous vehicles using the De-
centralised Data Fusion (DDF) paradigm. Particle representa-
tions, Parzen density estimates, and Gaussian mixture models
all seek to approximate the probability distributions of an ideal
Bayesian filter and have different properties with regard to
computational efficiency and quality of the approximation.

In order to satisfy the DDF requirements of modularity,
scalability, and robustness, the performance of each repre-
sentation is simulated for multi-sensor bearing-only tracking
simulations. Performance is evaluated in three areas: (a)
mathematical accuracy and optimality of fusion for correlated
information between nodes, (b) computational efficiency and
accuracy of various operations in the DDF framework and
(c) bandwidth requirements for communicating the represen-
tations over a wireless network.

1. INTRODUCTION

This paper aims to provide a comparison of the attributes
of non-Gaussian, non-linear probabilistic models for decen-
tralised, multi-sensor tracking particularly for autonomous air
and ground platforms. Despite the variety of techniques for
non-Gaussian and/or non-linear DDF, no contrasts have been
made on the performances of these algorithms. Gaussian mix-
ture models (GMMs) [1], Parzen density estimates [10], and
particles [6], three popular representations, will be compared
in this paper with emphasis on DDF.

A decentralised sensor network usually comprises of mul-
tiple processing nodes supporting one or more sensors. These
nodes are interconnected via ethernet or wireless communi-
cations. There are three main constraints to a DDF system.
The first is that no single central fusion centre exists and
no node is central to the operation of the network. Secondly,
communications are kept on a strictly node-to-node basis and
last, there is no global knowledge of the network topology [5].

Practical applications of DDF have been focused on rep-
resenting features with simple geometric models such as
points, circles or lines with Gaussian noise and through the
use of ranging devices such as laser and sonar. While such
techniques have been successfully used in autonomous air,
ground, and underwater vehicles, constructing accurate models

of unstructured and complex environments is difficult. On
the other hand, vision sensors return rich feature information
such as colour, texture and reflectivity. This information is
difficult to model as the appropriate process and observation
models are non-Gaussian. Hence, non-geometric probabilistic
representations and more general filtering techniques must be
considered.

Non-Gaussian probabilistic representations include particle
filters, Gaussian mixtures, Parzen density estimates and grid
based distributions [16]. Particle filters can be used represent
arbitrary distributions but there are currently no known solu-
tions for performing DDF directly on particles. Although DDF
can be performed using Parzen and Gaussian mixture repre-
sentations, the main drawback is the numbered components
increase from fusion and update operations requiring the need
for reparameterisation. The application of grid-based methods
are limited due to the fact they do not scale well with state
dimensionality.

In this paper, the performance of particle filters, GMMs,
and Parzen density estimates will be contrasted in areas
such as computational efficiency of Bayesian estimates, the
memory space required to run the filters, the mathematical
consistency in which data fusion can be achieved, as well as
bandwidth requirements. An application that benefits from this
study is decentralised non-linear tracking in unstructured and
complex environments using only visual sensory input. In our
experiments, we found that the more superior representation
is one in which particle filters are used for local filtering and
GMMs for decentralised fusion.

2. RELATED WORK

A scalable Gaussian based DDF architecture implemented on
UAVs has been successfully demonstrated by Nettleton [9],
using a Kalman Filter and its Information form. Local and
communicated information was fused asynchronously via ad-
ditive information matrices. However, this methodology does
not lend itself to extensions for general probabilistic distribu-
tions.

A problem faced in DDF is the removal of common
information. Common information between two nodes from
any received estimates needs to be accounted for, if fusion
is to be consistent [5] and ensure conservation estimates. It
was shown in Utete [19] that there is no finite nor general
solution for optimally identifying common information in



sensor networks of arbitrary topology. A Covariance Intersect
(CI) algorithm [8] provides a means to generate conservative
updates between multiple decentralised nodes in a Gaussian-
type filter. Otherwise, channel filters [5] may be used in tree
structured networks.

Rosencrantz et al. [12] and Ihler et al. [7] demonstrated
DDF using non-Gaussian representations but the guarantee for
conservative fusion updates is not considered. Rosencrantz et
al. decentralised a standard particle filter by communicating
and fusing the most informative subsets of samples. Ihler on
the other hand, introduced an approximate communication
algorithm known as non-parametric belief propagation for non-
parametric distributions.

GMMs and Parzen density estimates were first considered
by Alspach and Sorenson [15], [1] for target tracking where
it was suggested that the use of a single Gaussian kernel
with multiple means and weights simplified the target tracking
application. Ridley et al. [11] showed the use of Parzen density
estimates [10] with Gaussian kernels for DDF. The use of
Gaussian mixture models in DDF systems was demonstrated
by Upcroft et al. [18].

Both Upcroft et al. and Ridley et al. accounted for common
information although in a non-optimal sense. Ridley et al.
developed an analytical approximation to the division of the
local estimate and the communicated estimate which was
shown to be numerically conservative. Upcroft et al. applied
a GMM covariance intersect method to remove common
information in Gaussian mixture representations. However for
both methods, no analytical error bounds on illustrating the
consistency were shown.

This paper will try to compare these three representations
for DDF while ensuring common information is removed in a
numerically consistent way. The rest of the paper is organised
as follows: A generalised DDF node is described in Section
3, showing how common information is maintained in a node.
Section 4 introduces the form of the models used while the
filtering operations such as the local update are discussed in
Section 5. The models are then applied to a non-linear, non-
Gaussian example in Section 6. Section 7 provides results
and discussions on the performances of each representation
at decentralised non-linear non-Gaussian tracking. Section 8
concludes and shows future directions.

3. GENERALISED DECENTRALISED DATA FUSION

In a DDF system, each sensor node processes raw sensory
data to generate a likelihood. This likelihood is fused with
the local estimate of the feature which is then communicated
to the other nodes in the network via the channel filters [5].
The internal structure of a decentralised node is illustrated in
Figure 1.

A. Channel Filters

Channel filters are used for maintaining an estimate of com-
mon information passed between two nodes [5]. The removal
of common information between the communicated and local
estimate is essential in order to avoid over-confident estimates

Fig. 1: A Generalised Decentralised Node structure
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is the posterior
distribution. Equation 1 illustrates that a division operation
is required in a channel update for removal of the common
information held between communicating nodes. This division
is the main problems encountered in generalised DDF.

4. THE PROBABILISTIC REPRESENTATIONS

This section provides a description of the mixture of Gaussians
filter, the Parzen estimates filter and the particle filter.

A. The Mixture of Gaussians Filter

A Gaussian mixture model for a random variable X is P (x) =
∑n

i=1 γiGi(x), where x are the observations of X , Gi, is
the probability density for the ith component, and γi are the
weights where

∑n

i=1 γi = 1.

B. The Parzen Density Estimates Filter

Whilst any type of kernel may be used to represent a Parzen
probability distribution, Gaussian kernels are commonly used,
as most of its operations are closed in form and therefore
more efficient. The Parzen density estimator is the same as
a Gaussian mixture model except the covariance of each
component is equal and the number of components equal the
number of points in the data sample taken from the underlying
probability distribution.

C. The Particle Filter

Particle filters are a Monte Carlo estimation method based
on importance sampling, adapted to sequential filtering for
dynamic systems [6]. The probability distribution of the state,
is represented by particles at a given moment in time k, as a
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where δ (·) is the Dirac delta function.

5. COMPARING THE LOCAL UPDATE, PREDICTION AND
REPARAMETERISATION OPERATIONS

This section addresses the prediction and local update oper-
ations. The reparameterisation or resampling operations are
described with a comparison of the computational complexity
of each option. A linear Gaussian tracking simulation is carried
out to demonstrate the validity of these operations.

A. The Mixture of Gaussians Filter

The update operation for a mixture density estimate filter is a
multiplication of the two estimates shown as:

Pij(x) = Pi(x)Pj(x) =

ni
∑

i=1

γiGi(x)

nj
∑

j=1

γjGj(x)

=

nij
∑

ij=1

γijGij(x), where nij = ni × nj

(3)

and Gij(x) is the product of two Gaussians (Gi(x) and
Gj(x)). The solution to the product of two Gaussian mixtures
is shown by Sorenson and Alspach [15]. The component
increase to size nij is the resultant of this operation.

If the process model is Gaussian, prediction proceeds in the
normal manner with each component of the estimate.

To reduce the number of components, a reparametrisation
method is applied. An Expectation-Maximisation (EM) algo-
rithm [4], though computationally expensive may be used to
estimate the distribution with a smaller number of parameters.
This algorithm has a computational complexity of O(i×ND2)
where D is the dimensionality of the state, N is the number
of components points and i is the number of iterations [4].
Other reparameterisation alternatives include the joining and
clustering algorithms introduced by Salmond [13] in which
components or groups of components are combined while
ensuring the distance between the original distribution remains
within a pre-specified error bound. Compared to the EM
algorithm, the joining algorithm is far less computationally
complex at O(N log N) where N is the number of compo-
nents.

B. The Parzen Density Estimates Filter

The local prediction and update operations for a Parzen density
estimator are as for a Gaussian mixture model and hence, also
results in an increase in the number of the components after an
update operation. A subset of Salmond’s joining algorithm [13]
is applied to reduce the number of components.

C. The Particle Filter

The basic operation of a particle filter, as described in the
seminal paper of Gordon et al. [6], is to recursively estimate
the posterior distribution at the next time-step via a sequence
of sampling, importance weighting and resampling.

The update operation results in sample impoverishment or
poor exploration of state-space. This is a significant problem
as it causes the possibility of obtaining invalid statistics or
divergence. The solutions are either performing resampling
operations or increasing the sample size. Compared to the
reparameterisation step, the resampling step in the particle
filters is of order O(N) where N is the number of sample
points.

D. Comparison to a linear Gaussian system

In linear Gaussian tracking, the linear Kalman filter is the
optimal solution. To demonstrate the ability of each represen-
tation to approximate the underlying distribution each model
will be compared to linear Kalman filter solution using a chi-
squared measure [2]. The observation likelihood of the nine
Parzen density components and the five GMM were generated
as in section 6-A, with the components spread evenly in
the Cartesian-coordinate space around the observation mean.
This likelihood is then updated to the local estimate and
reparameterisation or resampling is performed.

Figure 2 shows the representations approximate the known
underlying distribution accurately. The GMMs and Parzen den-
sity estimate provide the best approximation with a maximum
error in the 10−28, whereas the Particle representation of 1000
is less accurate (with a maximum error of 0.2), due to the
accuracy of obtaining a chi-square measure from particles.
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Fig. 2: Chi-square error compared to a Kalman filter

6. BEARING-ONLY TRACKING

The Kalman filter often fails [6] in non-Gaussian, non-linear
tracking such as bearing-only tracking. These representations
will be evaluated in such a senario. In this simulation a feature
moved randomly in the x-y plane. The system process model
used for prediction was the Integrated Ornstein-Uhlenbeck
process [16] which allows for bounding of the Brownian
velocity over time. The observations were a sequence of
bearing measurements: zk = arctan( yk

xk
) + vk where zk is

the target bearing and vk, is the measurement noise.



A. Bearing-only observation likelihood generation

Parzen density and mixture of Gaussian representations
require an approximate transformation of the likelihood
from the bearing-only measurement-space to a sensor-centric
Cartersian-coordinate space. The reason behind this is that
their update-step requires a linear transformation between
likelihood-space and state-space. Particles on the other hand,
use the the bearing-only likelihood density directly as they
facilitate non-linear transformations between likelihood-space
and state-space.

In our experiments, the approximation for the mixture
of Gaussian representation is learnt off-line using the EM
algorithm [4]. The initial parameters for EM are equally
weighted Gaussians spread evenly over the range on the x-axis.
Approximately 50 EM iterations were then used to provide a
good fit of the parameters over this bearing-only distribution.
For the Parzen density approximation, the kernel window
selected is dependant on the number of kernels, range cutoff
and standard deviation. The kernel centres were manually
selected to equally cover the x-y space. The weights are
obtained by evaluating the true distribution at each component
and then normalised.

The parameters for the observation model selected was a
bearing of zero degree and standard deviation of 5 degrees.
The cutoff at 70 m was used so that the Parzen and GMMs
could represent a finite distance. It is assumed that the ob-
servation lies within the range cutoff. Figure 3 displays the
likelihood models given these parameters for the Gaussian
mixture, Parzen and particle representations respectively. The
particle representation is initialised with 2000 particles in the
x-y place. The components of the GMMs all lie approximately
at the observed bearing whereas there are less components for
the Parzen and particle representations at close range. Hence,
mixture of Gaussians representations give better approxima-
tions for features at closer range.

B. Comparing the accuracy of transformed likelihood model

To accommodate comparisons among various representations,
a divergence or distance measure is required to determine
the accuracy of each transformed likelihood model. The se-
lected measure, the Bhattacharyya Coefficient [3] is defined
as ρ(x) ≡

∑m

u=1

√

pu(x)qu where q is the represented
distribution and p is the true distribution (represented by a
fine grid).

The required number of components for each representation
was found by seeking the approximation that results in a
Bhattacharyya Coefficient of 0.95 or above. Figure 4 shows
Bhattacharyya coefficient given the number of components for
GMMs and Parzen representations. 15-20 components were
required for a Gaussian mixture model while 35-50 compo-
nents were required for a Parzen density representation. About
2000 components were required for the particle representation.
As the transformation of the likelihood is not required for
particle representations, the accuracy of representing the given
distribution in state space for this representation cannot be
determined.
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C. Bearing-only tracking simulation results

Unlike the Gaussian case, the true distribution of this non-
linear, non-Gaussian distribution is unknown. However, it can
be represented sufficiently with a considerably large number
of particles which is used as our ‘true’ distribution.

Figure 5, shows the accuracy of each representation with
the Bhattacharyya coefficient as a measure. Values closer to
1 indicate a solution that is close to the ’true’ distribution. It
shows all three representations are valid for this example.
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7. DECENTRALISED BEARING-ONLY TRACKING

Here, the performance of these representations is investi-
gated in a decentralised context including a constrast on
the compactness and fusion process of each model. DDF
applications require a compact representation particulary for
communication as bandwidth is often limited and a consistent
fusion process. A feature tracked by two nodes is simulated
to demonstrate the accuracy in DDF for each representation.

A. Comparison of the compactness of each representation

Table 1 shows the bandwidth and storage requirements for
each representation. The storage requirements are larger than
the bandwidth requirements for the Parzen and Gaussian mix-
ture representations as only the upper triangle of the covariance
matrix of both estimates need to be communicated while the
local estimate consists of the full covariance matrices.

The model to represent the state estimate required 20
GMMs, 50 Parzen components and 2000 particles. With a stor-
age or communication bandwidth of 500 floats, the maximum
number of particles is 500 which could prove insufficient,
whereas the mixture of Gaussian and Parzen representations
would exhibit more superior performances. The Parzen density
estimate is the most compact especially for higher dimensions.



(a) A mixture of Gaussians representation (b) A Parzen representation
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Fig. 3: The likelihood representations for a zero degree bearing and standard deviation of 5 degrees, over a range of 70m

TABLE 1: STORAGE AND BANDWIDTH REQUIREMENTS

Represent Dimen Components Components Bandwidth
-ation -sion for for or storage

storage comms available
GMM 4 23 33 500
Parzen 4 96 98 500
Particle 4 500 500 500
GMM 6 11 19 500
Parzen 6 66 68 500
Particle 6 500 500 500

For a dimension of 6, the maximum of 11 components that
can be communicated may not be as sufficient as 66 Parzen
components.

B. Comparing Fusion and Removal of Common Information
methods

The fusion operation is described and compared with the focus
on the removal of common information.

1) The Decentralised Mixture of Gaussians Filter: Fusion
for GMMs is performed via a GMM covariance intersect(CI),
update [18], ensuring conservative fusion of possibly corre-
lated information. Illustrated in Equations 4, 5 and 6 are the
CI operations where Σij ,µij and γij are the new covariance,
mean and weight of the distribution after fusion between the
ith component of the local estimate and the jth component of
the communicated estimate. A CI weighting parameter ω is
selected to minimise the determinant of the result.

Σ−1
ij = ωΣ−1

i + (1 − ω)Σ−1
j (4)

µij = Σij(ωΣ−1
i µi + (1 − ω)Σ−1

j µj) (5)
γij = ωγi + (1 − ω)γj (6)

2) The Decentralised Parzen Density Estimates Filter:
For a Parzen density estimate, Ridley et al. [11] showed
and numerically justified an analytical approximation to the
division operation described in Section 3. Each component of
the communicated estimate is divided by the same kernel. This
kernel is an approximation of the previously communicated
estimate. The result of this division is then updated or fused
with the local estimate via multiplication as with a local
update.

3) The Decentralised Particle Filter: There are currently
no known solutions for performing DDF directly on particles.
As particles are discrete representations, samples from one

set do not have the same support on the space as samples
from another set. Thus, both the multiplication and division
of Equation 1 are not well defined. One possible solution is to
convert one set into a continuous distribution such as a mixture
of Gaussians and use this to update the importance weights of
the particles from the other set. However, common information
is not removed in this fusion process. An alternative solution
is to convert both sets to continuous distributions and apply
one of the DDF techniques from Section 7-B.1 or 7-B.2.

Converting to a mixture of Gaussians representation and
then applying CI would be more desirable than a Parzen
representation as better summary of the particles can be
achieved. The main advantage of selecting particle filters over
the other two representations is computational speed. However,
converting both sets to continuous distributions would be
computationally expensive should communication and fusion
occur frequently.

C. DDF bearing-only results

In this simulation, the feature is tracked by two stationary
sensing nodes. The process and observation models are the
same as in Section 6. In this simulation, prediction occured
at every timestep intervals. The local update occured every
second timestep while each alternate node communicated its
estimate every sixth timestep. The performance comparison
used is the optimal centralised solution as it provides the
closest approximation to the ‘true’ solution. Here centralised,
means that each node communicating to every other node in
the network at every time step. A suitable measure would
be one that gives the information content of a distribution
such as Entropy [14]. A Quadratic Renyi Entropy suggested
by Torkola [17] will be used as the measure between the so-
lution of decentralised or standalone node with the centralised
solution.

Figure 6 illustrates the results for each node performing
DDF and the standalone nodes (i.e. no communications). The
results indicate that decentralised nodes exhibit performances
better than the sensors operating alone for each of the three
representations. The final solutions for the decentralised nodes
are similar but less compact that the centralised one.

More process noise was required for the Particle and Parzen
simulation compared to the others because of sample impro-
vishment, hence reducing the accuracy of this representation
if the update or fusion processes do not occur frequently.
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Fig. 6: Renyi Entropy for the GMMs, Parzen Density Estimates and the Particle filter solutions. It is shown that nodes with decentralised fusion give superior
results.

The CI update for the mixture of Gaussians is shown to be
more conservative than the decentralised fusion process for the
Parzen density estimate as it can be seen in Figures 6(a) and
6(b) that the Renyi Entropy is closer to the centralised solution
when fusion occurs compared to the mixture of Gaussians.

8. CONCLUSIONS AND FUTURE WORK

In this paper, it is demonstrated that Particle filters, Gaussian
mixture models and Parzen density estimates can satisfy
all the constraints for a general Decentralised data fusion
architecture and also provide solutions to the operations of
general Bayesian filtering.

The best representation for non-Gaussian, nonlinear feature
tracking in decentralised data fusion is dependant on the
application itself. For this simulation, using the particle rep-
resentation for a local filter and using mixtures as a summary
of the sample statistics for DDF is likely to be the best
option. Particle representations do not require an observation
likelihood transformation to state space, nor reparameterisation
which may be computationally expensive compared to resam-
pling. Parzen density estimates and Mixture of Gaussians are
more compact than a subset of particles, can be used for DDF
operations. Mixture of Gaussians are selected over Parzen
density estimates as the density estimation method used for
GMMs is more reliable than the Parzen representation.

One of the major areas of further research is improving
density estimation techniques for Parzen estimates and mixture
of Gaussians representations. Another is the development of
different fusion methods for particle representations. Major
advances in data association for multiple target tracking is
expected through this work. Future work will also include a
demonstration of each of these representations using vision
sensors on airborne vehicles, ground vehicles and stationary
ground nodes.
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