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Abstract

This paper presents Scan-SLAM, a new generalisation of simultaneous localisation
and mapping (SLAM). SLAM implementations based on extended Kalman filter
(EKF) data fusion have traditionally relied on simple geometric models for defin-
ing landmarks. This limits EKF-SLAM to environments suited to such models and
tends to discard much potentially useful data. The approach presented in this paper
is a marriage of EKF-SLAM and scan correlation. Landmarks are no longer defined
by analytical models; instead they are defined by templates composed of raw sensed
data. These templates can be augmented as more data becomes available so that the
landmark definition improves with time. A new generic observation model is derived
that is generated by scan correlation, and this permits stochastic location estima-
tion for landmarks with arbitrary shape within the Kalman filter framework. The
statistical advantages of an EKF representation are augmented with the general ap-
plicability of scan matching. Scan matching also serves to enhance data association
reliability by providing a shape metric for landmark disambiguation. Experimental
results in an outdoor environment are presented which validate the algorithm.

Key words: Simultaneous localisation and mapping (SLAM), EKF-SLAM, scan
correlation.

1 Introduction

A mobile robot must know where it is within an environment in order to navi-
gate autonomously and intelligently. Self-location and knowing the location of
other objects requires the existence of a map, and this basic requirement has
lead to the development of the simultaneous localisation and mapping (SLAM)
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algorithm over the past two decades, where the robot builds a map piece-wise
as it explores the environment. The predominant form of SLAM to date is
stochastic SLAM as introduced by Smith, Self and Cheeseman [17]. Stochas-
tic SLAM explicitly accounts for the errors that occur in sensed measurements:
measurement errors introduce uncertainties in the location estimates of map
landmarks which, in turn, incur uncertainty in the robot location estimate,
and so the landmark and robot pose estimates are dependent. Most prac-
tical implementations of stochastic SLAM represent these uncertainties and
correlations with a Gaussian probability density function (PDF), and propa-
gate the uncertainties using an extended Kalman filter (EKF). This form of
SLAM is known as EKF-SLAM [8]. One problem with EKF-SLAM is that it
requires geometric-shaped landmark models to account for the sensed data,
which limits the approach to environments suited to such models.

This paper presents an approach to SLAM which integrates scan correlation
methods with the EKF-SLAM framework. The map is constructed as an on-
line data fusion problem and maintains an estimate of uncertainties in the
robot pose and landmark locations. There is no requirement to accumulate
a scan history. Unlike previous EKF-SLAM implementations, landmarks are
not represented by simplistic analytical models, but rather are defined by
templates of raw sensor data. This way the feature models are not environment
specific and good data is not thrown away. The result is Scan-SLAM, which
uses raw data to represent landmarks and scan matching to generate landmark
observations. In essence, this approach presents a new way to define arbitrary
shaped landmark models, and in all other respects Scan-SLAM behaves in the
manner of conventional EKF-SLAM.

The format of this paper is as follows. The next section presents a review of
related work. Section 3 presents Scan-SLA M, which uses the method presented
in Section 4.2 to implement a scan correlation based observation update step
within the EKF-SLAM framework. Section 4 discusses scan segmentation and
scan alignment. The Iterative Closest Point (ICP) algorithm is described in
Section 4.2. The method is validated with experimental results presented in
Section 5. Finally conclusions are presented in Section 6.

2 Related Work

A significant issue with EKF-SLAM [6] is the design of the observation model.
Current implementations require landmark observations to be modelled as
geometric shapes, such as lines or circles. Measurements must fit into one of
the available geometric categories in order to be classified as a feature, and
non-conforming data is ignored. The chief problem with geometric landmark
models is that they tend to be environment specific, so that a model suited



to one type of environment might not work well in another and, in any case,
a lot of useful data is thrown away.

An alternative to analytical feature models is a procedure called scan correla-
tion, which computes a maximum likelihood alignment between two sets of raw
sensor data. Thus, given a set of observation data and a reference map com-
posed similarly of unprocessed data points, a robot can locate itself without
converting the measurements to any sort of geometric primitive. The obser-
vations are simply aligned with the map data so as to maximise a correlation
measure. Scan correlation has been used as a localisation mechanism from
an a priori map [21,10,5,11], with the iterated closest point (ICP) algorithm
[4,13] and occupancy grid correlation [7] being the most popular correlation
methods.

Two important methods have been presented to perform SLAM via scan cor-
relation. The first [19] uses expectation mazimisation (EM) to maximise the
correlation between scans, which results in a set of robot pose estimates that
give an “optimal” alignment between all scans. The second method, called con-
sistent pose estimation (CPE) [9], accumulates a selected history of scans, and
aligns them as a network; this approach is based on the algorithm presented
in [13].

The main concern with existing scan-correlation SLAM methods is that they
do not perform data fusion, instead requiring a (selected) history of raw scans
to be stored, and they are not compatible with the traditional EKF-SLAM
formulation. This paper presents a new algorithm that combines the EKF-
SLAM and scan correlation methods.

3 Scan-SLAM

Scan-SLAM is identical to conventional EKF-SLAM except for the definition
of the landmark appearance model. Landmarks are defined by a template of
raw sensor data; landmarks are observed by a process of scan-matching. This
process gives rise to a generic observation model, which is the location of a
local coordinate frame embedded in the landmark template. The landmark
templates also facilitate an augmented data association strategy.

3.1 Algorithm Overview

A landmark definition template is created by extracting a cluster of data points
from a measurement scan and transforming them to a local coordinate frame.
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Fig. 1. The local axis position is defined as the centroid of the template points and
orientation equal to the vehicle heading.

While there is no inherent restriction as to where this local axis is defined,
it is more intuitive to locate it somewhere close to the landmark data-points
and, in this paper, the local coordinate frame is defined as the centroid of the
template points. Figure 1 illustrates the concept. A new landmark is added
to the SLAM map by adding the global pose of its coordinate frame x; to
the SLAM state vector. Note that the landmark description template is not
added to the SLAM state and is stored in a separate data structure.

Suppose we have an existing SLAM estimate of map landmarks and a set of
associated template models. As new scans become available, the SLAM esti-
mate can be updated by the following process. First, the location of a map
landmark relative to the vehicle is predicted to determine whether the land-
mark template Sy is in the vicinity of the current observed scan S,. This
vehicle-relative landmark pose is the predicted observation z = [@;,g)(g,g&;]T
according to the observation model (see Equation 4 below). If there is a suc-
cessful data association between the landmark template and the current scan,
the landmark template is aligned via the scan matching algorithm, using z as
an initial guess. This process is illustrated in Figure 2.

At a higher level of abstraction, the result of this algorithm can be described
by the following pseudocode function interface.

~

[z, R] = scan_align(S;, S,, 2z)

That is, scan alignment results in an observation z, with uncertainty R, which
is the pose of the landmark template frame relative to the current vehicle pose.
The form of z is described in the next section. Having obtained the observation
z and R, the SLAM state is updated in the usual manner of EKF-SLAM.
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Fig. 2. Figure (a) shows a stored scan landmark template (solid line) positioned at
the predicted pose z relative to the vehicle, and a new observed scan (dashed line).
Figure (b) shows the scan alignment evaluated with the scan correlation algorithm
from which the observation vector z is obtained.

3.2  Generic Observation Model

The data points representing a scan landmark template are stored in a data
structure separate from the actual stochastic SLAM estimate, and is used
by the scan alignment algorithm to obtain landmark location observations.
The stochastic SLAM state is composed of the global locations of landmark
coordinate frames. Thus, the stochastic observation model for all landmarks
is the measurement of a global landmark frame as seen from the global vehicle
pose (see Figure 3).

The SLAM state vector

X’L)
Xjoint = (]-)
XL
consists of the vehicle pose
Xy = [xva Yuv, ¢U}T (2)
and a set of landmark frame locations
XL = [pr YL, ¢L17 s 7$L¢7 yLm ¢Li7 o s Ty YLy ¢Ln]T (3)

The generic observation model for the pose of a landmark coordinate frame



with respect to the vehicle is as follows.

Zz = [x57y57¢5]T =h (XLax'U)

(wL - xv) COs ¢v + (yL - yv) sin ¢v

- _<xL - mv) sin ¢v + (yL - yv) COs (bv
¢L - (bv

3.8  Landmark Representation

Scan-SLAM defines the landmarks by a template of points in a local landmark
coordinate frame. This local representation allows to enrich the landmark-
templates with the information collected from different sensors, such as 3D-
lasers or cameras. The addition of more information allows to build high-
dimensional landmarks which makes them more distinctive and makes the
association process very robust [15]. An example is shown in Figure 4. Figure
(a) shows the information collected from a laser in an outdoor environment.
Figure (b) shows an image of the same part of the environment and (c) shows
the laser information superimposed with the video image. The laser was cali-
brated with the camera using the algorithm presented in [22] . The laser and
video information and any other sensed data can be stored in the landmark
local coordinate frame to represent a high-dimensional landmark.

I Thanks to Fabio Ramos for the images.

Global frame

Fig. 3. All features are represented in the SLAM map as a global pose identifying
the location of the landmark coordinate frame. The generic observation model for
these features is a measurement of the global landmark pose x;, with respect to the
global vehicle pose x,. The vehicle-relative observation is z = [z5, ys, ¢s]” -
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Fig. 4. Figure (a) shows the information collected from a laser in an outdoor envi-
ronment. Figure (b) shows an image of the same part of the environment and (c)
shows the laser information superimposed with the video image. The scan points
are represented with ‘4’ in the video image.

3.4 Data association

A difficult problem in SLAM is data association, largely because the traditional
criterion used to distinguish one landmark from another has been solely based
on the innovation gate distance metric. Exclusive use of this criterion does not
exploit other landmark attributes that may be useful for disambiguation. As a
byproduct of scan-alignment, we obtain a measure of how well a scan segment
matches the shape of a landmark template and we use this as an additional
data association metric.

3.4.1 Innovation Gate

The traditional data association metric in target tracking is the normalised
innovation squared [2], which is the error between predicted and actual obser-
vation normalised by error covariance. A threshold on this quantity is known
as the innovation gate.



The innovation gate is also used for data association in stochastic SLAM, and
permits landmarks to be distinguished by their position. However, landmarks
that are too close in position give rise to ambiguous associations. Whether
two landmarks are too close to disambiguate is a function of their position
uncertainty, the vehicle pose uncertainty and the measurement noise. Batch
association methods [14,1], where multiple measurements are considered simul-
taneously, greatly reduce this uncertainty but ambiguous associations cannot
be completely eliminated.

3.4.2  Shape Matching

Landmark attributes can greatly augment position-based association reliabil-
ity, and an attribute that is available from the landmark templates is shape.
If an aligned scan segment does not have the same shape as its landmark
template, the association is rejected. Thus, data association is strengthened
by accepting only when both shape and innovation gate criteria are met.

4 Implementation

In this section we describe four operations that are required to apply scan
matching to the EKF-SLAM algorithm. While these four operations are re-
quired to implement the algorithm, the best solution for them is still an
open problem. We stress here that our current implementations are essentially
“proof of concept”, and do not constitute our primary contribution, which is
the concepts described in the previous section.

The first operation described is scan segmentation whereby a scan of data
points is divided into clusters and reliable clusters are selected to represent
landmarks. The second is scan correlation, aligning the data of multiple scans
so that data representing the same object overlap. The third is the generation
of a suitable measure of alignment uncertainty or variance. The fourth is a
shape matching criteria that determines whether an alignment is sufficiently
good to be accepted as a valid observation. This last operation is not essen-
tial but serves to assist the conventional data association mechanism used in

SLAM.

The methods in this section are by no means the only way of accomplishing
the underlying operations. The main thrust of this paper is the generic obser-
vation model described in Section 3, and the implementations developed here
are but practical realisations to achieve this goal. For segmentation we use a
distance metric and saliency score; for scan correlation we use ICP; for vari-
ance estimation we implement a sampling algorithm; and for shape matching



we employ a simple distance gate.

4.1 Scan Segmentation

When a new scan is received it is first broken into clusters. This is done by
comparing consecutive range measurements, which arrive in order of sweep
angle. For two successive measurements, if the difference in either range or
angle is greater than a threshold, the latter measurement forms the beginning
of a new cluster. This algorithm groups together clusters of near points.

Having segmented the scan, it remains to determine which clusters will make
a reliable landmarks. Two criteria are used. The first is that a cluster must
contain more than a minimum number of points, and the second is a measure
of how informative a cluster is for pose estimation.

A number of measures for cluster informativeness appear in the literature.
A parameter called typical boundary error is introduced in [16] and applied
to 3-D images. The averaged RMS error for the vertices gives an estimate of
point alignment accuracy. Similarly, in [18] another parameter is defined called
registration index. The registration index gives an indication of how well two
surfaces may be registered. In [20] a parameter called object saliency score
is defined. This parameter is defined as the inverse of the covariance matrix
trace, obtained after aligning two shapes. The larger the object saliency score,
the more certain the pose estimate from the registration process.

These parameters can then be used to predict the accuracy of the registration
process with a particular segment and then, to assist in deciding whether the
segment will be incorporated as a new landmark or not. In this paper we use
the object saliency score which is defined in [20] as

1
S —

~ trace(R) (5)

where R is the scan matching covariance matrix obtained as explained in
Section 4.3. Since the matrix R is the covariance of the observation which
includes position and orientation, if the object saliency score is applied as in
Equation 5 we would be adding values with different dimensions (e.g. metres
for position and radians for orientation). For that reason, here we obtain the
saliency for position and orientation separately.

The segmentation procedure is as follows: when a new frame is received it is
first segmented into clusters using the method explained above. The autoco-
variance of a cluster is obtained by calculating the covariance of the alignment
between the cluster and a copy of itself. The covariance of the alignment is



Object | Wall | Corner | Arbitrary Shape

s | 114 | 124 592

o2 |0.85| 0.53 0.7

Table 1

Object Saliency Score for three different objects. The first row shows the mean of
the saliency score obtained with 100 trials. The second row shows the variance of
the saliency score.

calculated using the method presented in Section 4.3. This method rotates and
translates a copy of the cluster and then applies scan matching to align them
back. This process is done with N copies of the cluster, and the autocovariance
is calculated based on the result of the alignments. Section 4.3 explains this
process in detail. Following, the object saliency score is calculated and based
on the result the segment is rejected or accepted as a new landmark.

To illustrate the concept, the object saliency score was calculated for the three
objects presented in Figure 6. In order to analyse the stability of the index,
the saliency score was calculated several times for each object. An observation
of each object was taken and the saliency score was evaluated 100 times using
different sensor pose samples for the covariance estimation (see Section 4.3).
Table 1 summarises the result. Based on the outcome of the 100 trials, we
obtained a mean and variance values for the saliency score of each object. As
expected, the wall has the lowest value with mean equal to 1.14. On the other
hand the corner and the arbitrary shape object possess much higher score
index mean, 124 and 592 respectively. The second row in the table shows
the variance of these values over the 100 trials. As seen, the index presents
very small variance for all cases. The saliency score presented in the table
was calculated using the variance in position. In all the cases, the variance in
orientation was very small (less than 0.3 degrees).

Figure 7 shows an example of the saliency score obtained with two segments
extracted from scans taken with a Sick laser. The segment showed in (a) was
obtained by observing a wall. This segment possess very low saliency score
equal to 2.7. (b) illustrates the observations obtained from the corner of a
building. The saliency score of the corner is 112.

4.2 Scan Alignment via ICP

Unprocessed data correlation, also called scan alignment or range-image reg-
istration, is the process of aligning an observed set of (2-D or 3-D) points with
a reference point set. ICP [4,23] is arguably the most commonly used range-
image registration technique, with its popularity due mainly to its simplicity
and efficiency. The basic algorithm works as follows. Let P, = {p1, ..., pm } rep-

10
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Fig. 5. Scan segmentation based on distance. The ‘.” represent the laser scan. Three
cluster of points were selected by the algorithm. The individual clusters are repre-
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Fig. 6. The figure shows three different shapes used to test the saliency score. Figure
(a) represents a simulated wall, (b) a corner and (c) an object with arbitrary shape.

resent the observation point set and P, = {py, ..., p,} be the reference point
set. The aim of the algorithm is to find a geometric transformation to align
the observed points P, to the reference point set P,.. This transformation is
composed by a translation and a rotation. ICP is an iterative algorithm, con-
sisting in two steps. The first step involves finding the correspondence between
the points in the observed and reference scan. This is done using a nearest
neighbour algorithm. The second step is to obtain a rotation and translation
between the two scans, minimising the mean square error (MSE). The algo-
rithm is initialised with an initial pose guess and, until the estimated pose
satisfies some convergence criterion, it is iteratively refined by a process of
point-to-point data association and least-squares transformation. Each point
p € P, is first transformed to the reference coordinate frame using the cur-

11
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(a)
Fig. 7. Segments extracted from experimental data using a Sick Laser. The segment

in (a) has very low saliency score equal to 2.7 because it is very linear; no orthogonal
parts. The segment in (b) has a saliency score equal to 112.

rent pose estimate, and then associated to its nearest neighbour in P,.. The
original point p and its associate ¢ are added to an association set E. Finally,
the pairs in E are used to calculate the relative pose that minimises the least-
mean-squared error between the associated points. For the experiments in this
paper we use a quaternion based method as presented in [4]. An example of
ICP alignment is shown in Figure 8.

4.8  Scan Alignment Variance

In order to fuse the scan alignment results with other sensor measurements,
it is necessary to obtain a covariance estimate of the alignment.

In [12], the square error function is linearised and the covariance matrix is
derived analytically using linear regression theory. One of the problems of
ICP is the heuristic way the algorithm finds corresponding pair of points. The
method to obtain the covariance matrix presented in [12] will give good results
only if corresponding points are correctly associated. The method does not
consider the error in point correspondence that will happen when observing
objects with symmetry (e.g. a wall in a long corridor) and thus tends to give
very optimistic covariances.

The method presented in [3] obtains the covariance matrix by estimating the
Hessian matrix of the error function minimised by ICP. It is claimed that
by using the Hessian matrix, the method does not suffer the corresponding
problem as in [12]. Unfortunately the method still tends to be very optimistic
and fails to obtain realistic covariances where points correspondence cannot
be guarantee. In addition this method does not take measurement noise into
account, it assumes equal noise for all the points.

12



Another technique to estimate the covariance of scan alignment was presented

n [20]. Instead of using one initial relative transformation, the registration
process is run N times with random initial relative transformations. The dis-
tribution of the N samples after the alignment process gives an estimate of
the alignment covariance. The covariance estimates using the sampling method
give a good approximation to the actual distribution. In order to include the
measurement noise into the covariance estimates, the method transforms the
sensor scans into occupancy grid maps and uses grid correlation [11] to weight
the samples. The samples with low correlation response are filtered out.

The technique used in this paper is also based on a sampling approach. First,
the scan alignment algorithm is run to align the observation with the reference
scan. Then, N samples of the vehicle pose are generated around the ICP
solution. The registration process is run N times using the samples as initial
relative transformations. A covariance matrix is obtained for each sample by
linearizing the square error and deriving the covariance matrix analytically as
n [12]. The N Gaussians are then converted into one Gaussian by computing
the first and second moment of the mixture.

1
X = NZ (6)

P= o3 (Pt (- 0%~ %)) 7)

i

Using this sampling method, the algorithm eliminates the problem of opti-
mistic results due to erroneous data associations between points, since each
sample of the robot pose will make different point-to-point associations.

Figure 9 shows an example of covariance estimation using the sampling based
approach. The object observed is depicted with a solid line in Figure (a).
The covariance obtained is represented with an ellipse. Figure (b) shows a
zoom of the estimated covariance. The standard deviations obtained with the
sampling based approach were ¢ = [0.89 m, 0.85 m, 0.36 deg] and applying
linearization and evaluating the analytical solution as in [12] the standard
deviations obtained were o = [0.025 m, 0.027 m, 0.13 deg]. Clearly the second
solution is very optimistic since is giving accuracy of 2 c¢cm even when the
object observed possesses symmetry. It can be also seen in Figure 9 (b) that
the covariance estimated with the sampling approach is consistent with the
actual error.

Figure 10 shows the samples used to calculate the covariance. The left-hand
figure in (a) shows the samples from the robot position (x-y). The samples
were obtained from a uniform distribution around the position obtained with
ICP. The right-hand figure in (a) shows the samples distribution after applying

13
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Fig. 8. Example of scan alignment using ICP: (a) shows two scans taken from
different position before alignment. (b) shows the scans aligned using ICP.

ICP. The scan matching algorithm aligns the samples in the direction parallel
to the object observed. Finally, Figure (b) shows the samples for the vehicle
heading where it can be seen that all the samples converge to the same value.
The observation was taken from [3 m, -2 m, -10 deg].

The variation of the covariance estimates with the number of samples was anal-
ysed. A simulated wall parallel to the x axis was used for the analysis. Figure
11 (a) shows the standard deviation in x-y. As expected, the uncertainty in x
is much larger since the object is parallel to this axis. Each value was obtained
as the mean of 10 trials. Figure (b) shows the variation of the standard devia-
tion in the vehicle orientation. As it can be observed the standard deviations
tend to be very stable with the number of samples, which means that even
for cases such as the one shown in the example where the covariance of the
alignment is large, a low number of samples gives good results.

4.4 Shape Validation

Once two scans have been aligned, it is possible to determine how well their
data-points fit together, for data association purposes. We wish for this shape-
matching criterion to be immune to view-point variation, so only those points
that comprise an overlapping region are compared in the algorithm.

The basic procedure is as follows. First, the points in each scan that form
part of a common region are extracted. If there are too few points in this
overlapping region for either scan, then the match is rejected. Next, each
extracted point from scan one is mapped to its nearest-neighbour in scan two,
and their distances are computed. If an excess percentage of neighbours are
greater than a threshold away, the match is rejected. Otherwise the scans are

14
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Fig. 9. Figure (a) shows the covariance estimated when observing a simulated wall
which is depicted with solid line. The ‘.” represents the reference scan and the ‘+’
the observation. The 20 covariance bound is represented with an ellipse. Figure
(b) shows a zoom of the estimated covariance. The ‘o’ denotes the vehicle position
estimated with ICP and the ‘*’ the actual observation position.
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Fig. 10. The left-hand figure in (a) shows the samples from the robot position
(x-y) used to obtain the covariance. The samples were obtained from a uniform
distribution. The right-hand figure shows the samples distribution after applying
ICP. (b) shows the samples for the vehicle heading. The observation was taken from
[3m , -2m, —10°]

taken to possess similar shape. Figures 12 and 13 show an example of the
shape validation procedure. Figure 12 (a) shows a scan landmark and (b) an
example of a scan that contains that scan landmark. Figure 13 (a) illustrates
a case of a positive shape validation result and (b) a case where the alignment
is rejected by the shape validation procedure.

15
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Fig. 11. The figures show the standard deviation of the covariances obtained using
different number of samples. Each value was obtained as the mean of 10 trials. A
simulated wall parallel to the x-axis was used. (a) shows in dashed line the standard
deviation in the y direction and in solid line for x. As expected, the uncertainty in
x is much larger since the object is parallel to this axis. (b) shows the variation of
the standard deviation in the vehicle orientation.
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Fig. 12. Figure (a) shows a landmark template. (b) shows a laser scan which includes
the scan-landmark showed in (a). The rectangle enclose the overlapping region.

i a

+ -
#“M %-& 1 +&g§:‘+
i’##"## .

¥

N |

s o 7 s B 10 o 1 2z 3 4
x-metres x-metres

(a) (b)
Fig. 13. Figure (a) shows an example of a match accepted by the algorithm. The
points of the scan landmark are depicted by ‘4’ and the ‘. represents the whole
laser scan. The figure shows only the points that form part of a common region. (b)
shows an example where the algorithm rejected the match. The rectangles enclose
areas where the two scans do not overlap.
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5 Results

This section shows simulation and experimental results of the algorithm pre-
sented. The importance of the simulation results is in the possibility to com-
pare the actual objects position with the estimated by Scan-SLAM.

Figure 14 shows the simulation environment. The experiment was done in an
area of 180 by 160 metres with a sensor field of view of 40 metres. The vehicle
travels at a constant speed of 3 m/s. The sensor observations are corrupted
with Gaussian noise with standard deviations of 0.1 metres in range and 1.5
degrees in bearing. The simulation map consists of objects with different ge-
ometry and size. The segmentation was done as explained in Section 4.1. An
algorithm searches for clusters of neighbour points which contain a minimum
number of points. Due to the shape of the objects it was not necessary the
use of the saliency index. All the clusters were incorporated as landmarks.

The results for the Scan-SLAM algorithm are shown in Figure 14 (a) and (b).
Here the solid line depicts the ground truth for the robot pose and the dashed
line the estimated vehicle path. The actual object positions are represented
by the light solid line and the segment positions by the dark points. The local
axis pose for each scan landmark is also shown and the ellipses indicate the 3o
uncertainty bound of each scan landmark. The local axis position was defined
equal to the average position of the raw points included in the segment, and
the orientation equal to the vehicle orientation. Figure 15 shows a zoom of
the left top area of the simulation which depicts in more detail the sensory
information that is added to the representation obtained by the algorithm.
Figure 14 (b) shows the result after the vehicle closes the loop and the SLAM
algorithm updates the map. The good alignment between the actual object
positions and the estimates by the algorithm illustrates the accuracy of the
results obtained by the approach.

The algorithm was also tested using experimental data. In the experiment a
standard utility vehicle was fitted with dead reckoning and laser range sensors.
The testing environment was the car park area near the university building.
Figure 16 (a) shows the vehicle used for the experiments and (b) shows a
satellite picture of the experimental area. The environment is mainly dom-
inated by buildings and trees. Figure 17 (a) illustrates the result obtained
with the algorithm. The solid line denotes the trajectory estimated. The light
points represent a laser-image obtained using feature-based SLAM and GPS,
which can be used as a reference for the objects position. The dark points
represent the template scans and the ellipses the 1o covariance bounds. The
local axes for the scan landmarks were also drawn in the figure. The same
segmentation algorithm applied for the simulation was used here. After the
scan is segmented into clusters of points, the saliency score index is calculated
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Fig. 14. Figure (a) shows the simulation environment. The solid line depicts the
ground truth for the robot pose and the dashed line the estimated vehicle path.
The actual object positions are represented by the light solid line and the segment

positions by the dark points. The ellipses indicate the 3o uncertainty bound of each
scan landmark. Figure (b) illustrates the result after closing the loop.

for each cluster in order to decide whether they are incorporated as a new
landmark. The saliency score threshold used for acceptance was set to 100.
Five scan landmarks were incorporated and used for the SLAM. The accuracy
of the result can be seen by comparing the scan landmarks position with the
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Fig. 15. Zoom of the left top area of the simulation environment. The figure shows
the actual object poses with plain lines. The landmark templates are denote with
*.”. The 3o ellipses for the local axis representing the scan landmarks are also shown.

--\..l.ll-

Fig. 16. Figure (a) shows the experimental platform used to collect data. The utility
car is equipped with Sick lasers, linear variable differential transformer sensor for
the steering mechanism, back wheel velocity encoder and inertial unit. Figure (b)
illustrates a satellite picture of the testing environment.

superimposed laser-image. Figure 17 (b) shows an example of the alignment
between a scan-landmark and a new sensor frame. The figure shows one of the
scan-landmarks and a laser scan at the moment these two are being aligned
by the scan-matching algorithm. Figure 18 illustrates the final map with the
local coordinate systems, the landmark template points and its object saliency
score. As mentioned, a minimum of 100 in saliency was required for a segment
to be accepted as a landmark.
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6 Conclusions

EKF-SLAM is currently the most commonly used filter to solve the stochas-
tic SLAM problem. An important issue with EKF-SLAM is that it requires
sensory information to be modelled as geometric shapes and the information
that does not fit in any of the geometric models is usually rejected. On the
other hand, scan correlation methods use raw data and are not restricted to
geometric models. Scan correlation methods have mainly been used for local-
isation given an a priori map. Some algorithms that perform scan correlation
based SLAM have appeared, but they do not perform data fusion and they
require storage of a history of raw scans.

The Scan-SLAM algorithm presented in this paper combines scan correlation
with EKF-SLAM. The hybrid approach uses the best of both paradigms; it
incorporates raw data into the map representation and so does not require
geometric models, and estimates the map in a recursive manner without the
need to store the scan history. It works as an EKF-SLAM that uses arbitrary
shaped landmark models and utilises scan correlation algorithms to produce
landmark observations. Experimental results in an outdoor environment were
presented that showed the efficacy of the algorithm.
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Fig. 17. Figure (a) shows the Scan-SLAM result obtained in the car park area. The
solid line denotes the trajectory estimated. The light points represent a laser-image
obtained using feature-based SLAM and GPS. The dark points represent the tem-
plate scans position and the ellipses the 1o covariance bounds. (b) shows a result of
the alignment between a scan-landmark and a new laser scan. The scan landmark
template is denoted by ‘o’ and the laser points by °.’.
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Fig. 18. The figure shows the local coordinate systems, the landmark template and
its saliency score for the scan-landmarks incorporated. A minimum saliency of 100
was required to accepted a segment as a landmark.

24



