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Abstract
This paper addresses the problem of closing the loop from per-
ception to action selection for unmanned ground vehicles, with
a focus on navigating slopes. A new non-parametric learning
technique is presented to generate a mobility representation
where maximum feasible speed is used as a criterion to clas-
sify the world. The inputs to the algorithm are terrain gradients
derived from an elevation map and past observations of wheel
slip. It is argued that such a representation can aid in path plan-
ning with improved selection of vehicle heading and velocity
in off-road slopes. In addition, an information theoretic test
is proposed to validate a chosen proprioceptive representation
(such as slip) for mobility map generation. Results of mobility
map generation and its benefits to path planning are shown.

1 Introduction
Learning techniques that close the loop from perception to ac-
tion selection are of particular interest for off-road robotics.
This loop closure refers to the need for an intermediate mod-
ule that processes sensed exteroceptive1 information such as
terrain slopes and colour into a representation which can di-
rectly aid in decision making (such as path planning). This
task of interpreting exteroceptive data by associating a scalar
value of cost or utility is referred to as Scene Interpretation
in this work. In ground vehicle robotics the focus is usu-
ally on identifying hard hazards such as obstacles or classi-
fying predefined environmental states into different degrees of
traversibility (Ojeda et al. 2006; Jackel et al. 2006; Hadsell
et al. 2007; Shneier et al. 2008). Assumptions such as terrain
homogeneity, or perpetual existence of a road are often made
to simplify the problem. In the absence of such assumptions,

1Exteroception: perception of external factors that are not under agent con-
trol

theoretical techniques that use sensed information to aid deci-
sion making need to be investigated. This paper addresses the
above mentioned problem with a specific focus on negotiat-
ing two dimensional slopes given range sensor measurements.
However, the learning algorithm presented in this work can be
extended to include additional exteroceptive variables such as
terrain colour and texture.

Autonomous navigation in unstructured conditions such as
non-homogeneous uneven terrain is a challenging problem to
solve. In such environments two main issues need to be ad-
dressed. First, explicit assumptions about the terrain should
be avoided. Second, in addition to hard hazards (such as ob-
stacles), soft hazards (situations where behaviour needs to be
adapted) need to be identified and dealt with. For example, ter-
rain slopes are soft hazards and to successfully negotiate them,
vehicle behaviour such as velocity, operating gear and vehicle
heading needs to be adjusted. In addition to obstacle avoid-
ance, cost representations that aid path planning over slopes
require two key properties. i) Orientation sensitivity, as nav-
igating down hill and up hill need to be judged differently ii)
The ability to encapsulate platform and controller limitations,
as performance on slopes is very sensitive to controller tuning
in practice. Tuning a controller to a certain condition (such as
flat terrain) can limit its performance in other conditions (such
as non-flat terrain)(see Extension 1).

Due to recent developments in Bayesian non-parametric
techniques, learning from experience architectures offer
promise. In such architectures, no assumptions need to be
made about the environment. The environment representa-
tion is only limited by the available sensor suite and the vari-
ables used to define the exteroceptive state. Hence, a non-
parametric learning technique is proposed in Section 4 to learn
from past observations of behaviour, environment and propri-
oceptive2 feedback. More specifically, the proposed learning

2Proprioception: perception of internal factors that are affected by envi-
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technique uses past observations of slope (environment), ve-
locity (behaviour) and wheel slip (proprioceptive feedback).
Better representations in the scene interpretation problem can
aid the purpose of bridging the gap between perception and
action selection in unstructured environments. One cost/utility
representation of the world that is of interest is a mobility map
(Wong 2001) (see Figure 1). Here the maximum feasible speed
of the vehicle between two points is used as a criterion for con-
tinuous classification, as such capturing the net utility of an en-
vironment condition with a single value. Such a mobility map
explicitly represents traversibility of occupied, admissible and
unexplored regions and can be used as an objective map for
trajectory planning algorithms such as A∗.

Figure 1: Sample Mobility Map Indicating Maximum Feasible
Speed (Shaded areas indicate immobile and unexplored areas)

For navigating slopes, a vectorised representation of a mo-
bility map can offer orientation sensitivity by making the mo-
bility values dependent on the direction of pitch and roll slope
definitions. An additional benefit of mobility representation
over the traditional heuristic cost spaces is that environment
utility is defined in behaviour space or action space3. In be-
haviour space, scene interpretation can be treated as a learn-
ing problem where agents learn about behavioural limits (such
as maximum feasible speeds in a mobility map) by physi-
cally interacting with the environment. The observed extent of
behaviour limitation provides information about environment
utility/risk. For example, a lower speed limit in a mobility map
indicates higher behaviour limitation due to its restricted abil-
ity to interact with the environment. As such, the extent of

ronment and one’s own behaviour.
3This type of knowledge representation of the world in behaviour space is

an embodiment of the concept of ‘enaction’ which is a current trend in cog-
nitive studies. It proposes a bidirectional link between perception and action
such that perception controls action and further action influences perception
in a closed loop system (Noë 2005).

limitation is indicative of how costly a particular environmen-
tal condition is relative to other conditions. Other examples
of behaviour space measures for scene interpretation include
kinetic energy limits, and bandwidth of allowable behaviours
that indicate the extent of feasible interaction with an environ-
mental condition. In behaviour space interpretations both hard
and soft hazards are encapsulated in a continuum as different
degrees of behavioural limits. Such an interpretation also cap-
tures both platform and controller limitations implicitly.

In summary, it is beneficial to clarify the focus of this paper.
The proposed learning approach is a means for gross assess-
ment of a environmental condition given past observations of
proprioceptive feedback such as slips. This is the problem of
getting a cost/utility/reward function to aid decision making
but not a decision making problem in itself. From a decision
making point of view, temporal correlations between succes-
sive actions and spatial correlations between neighbouring en-
vironmental states become important. These correlations are
not taken into account in a scene interpretation problem where
the goal is get an instantaneous assessment of a given con-
dition. However, given a reward/utility function they can be
taken into account in a reinforcement learning or an optimal
control framework.

This paper is an extended version of Karumanchi et al.
(2009). In this revised version, we extend the learning al-
gorithm to address multimodality and scalability to large
datasets. Additionally, an empirical validity test is introduced
that addresses the question of an appropriate choice of propri-
oceptive representation. For example, in the specific problem
addressed in this paper the validity test is used to justify the
use of wheel slips to interpret terrain slopes.

2 Related Work
In this section, related publications that address scene interpre-
tation as a learning problem are discussed. To our knowledge,
the use of learning techniques for a continuous space interpre-
tation4 is quite recent and only has a few related publications,
which are discussed below.

Existing ‘learning from experience’ techniques include Re-
inforcement Learning (Sutton and Barto 1998) and model pre-
dictive techniques (Lacroix et al. 2002; Green and Rye 2007).
Model predictive techniques aim to quantify the environment
from repeated simulation. However, these techniques make
assumptions such as the existence of a reward function in Re-
inforcement Learning, or the existence of accurate models for
model predictive techniques. It is difficult to quantify such

4In contrast, discrete space interpretation of terrain conditions is more pop-
ular in the form of classification problems (Ojeda et al. 2006; Jackel et al.
2006; Hadsell et al. 2007; Shneier et al. 2008).
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reward functions or develop accurate models in unstructured
environments in a deterministic fashion. This work tackles
the problem of scene interpretation which looks at learning a
reward/utility function that can be used within reinforcement
learning or optimal control frameworks.

Related work in off-road navigation includes work in long
range planning using overhead data by Silver et al. (2006) and
Sofman et al. (2006). In the former work, the authors use
manually engineered traversal costs by hand tuning the cost
functions from semantic and geometric data. Sofman et al.
(2006) demonstrate a self-supervised approach of predicting
terrain cost on far-range or overhead data from noisy local ob-
servations of cost. Although their cost definitions are based on
heuristics, the contributions (weights) of different feature costs
are learned in a probabilistic model. In this work, it is shown
that the problem of negotiating soft hazards such as slopes can
be better addressed with a mobility representation compared
to scalar cost representations used in the above mentioned pa-
pers.

Current state of the art in scene interpretation includes Im-
itation Learning (Silver et al. 2008; Ratliff 2009) and Inverse
Reinforcement Learning (Abbeel and Ng 2004). These are rel-
atively new concepts and have been applied to the problem
of learning a reward function from example behaviour. How-
ever, they rely heavily on expert input. Controller limitations
are usually ignored when systems rely purely on expert input.
Such limitations can be dealt with implicitly when the vehi-
cle explores its behavioural capabilities on its own terms. This
sort of introspective judgement in a self-supervised manner is
achievable if one has access to proprioceptive feedback.

A learning from proprioception approach is demonstrated
in Angelova et al. (2007) for a Mars-Rover platform where the
authors represent the environment in proprioception space in
terms of expected slip. This approach ignores the influence
of velocity on wheel slip. For a Mars-Rover, proprioceptive
measures (such as wheel slip) are mainly dependent on en-
vironment conditions and behavioral influences (such as ve-
locity) could be ignored because the platform moves slowly.
However, this assumption cannot be made for larger platforms
where there is a distribution of slip values for a given condi-
tion pertaining to all possible behaviours. Also, such an ap-
proach is limited to the case when proprioception is a scalar or
a weighted average of scalars. The latter usually involves man-
ual tuning of weights which is not an intuitive process. A sin-
gle scalar cost cannot capture multiple objectives in unstruc-
tured conditions. Instead it is beneficial to use a collage of pro-
prioceptive stimuli to judge actions. Traditionally, propriocep-
tive feedback has been used as a means to instantaneously as-
sess utility or risk (Stavens et al. 2007), much akin to an instan-
taneous reward formulation in Reinforcement Learning. How-
ever, for complex agent-environment interaction problems it is

not the immediate proprioceptive observation but the emsem-
ble of past observations which are informative. In this work,
proprioceptive information is dealt with in a statistical frame-
work for the above mentioned reasons.

3 Outline
This paper is organised as follows. Section 4 formally intro-
duces the scene interpretation problem as conditional density
estimation and a non-parametric solution using Gaussian Pro-
cesses is proposed. Section 5 introduces an information the-
oretic test to validate a chosen proprioceptive representation.
Section 6 discusses the test platform and describes collection
of training data. In Section 7, results of the validity test for dif-
ferent proprioceptive representations are shown. Additionally,
results of scene interpretation are shown on an elevation map
derived from laser scans. Mobility maps are derived from the
given elevation map by analysing terrain gradients with past
observations of vehicle slip collected from a skid-steered ve-
hicle (shown in Figure 2). Section 8 compares path planning
over mobility maps with planning over heuristic costs. Section
9 analyses various regressions algorithms for the problem at
hand and discusses their limitations. Finally in Section 10, fu-
ture work is discussed and concluding remarks are presented.

Figure 2: Argo 8x8 Unmanned Ground Vehicle

4 Proprioceptive Scene Interpretation

4.1 Motivation
Current terrain perception modules in unmanned ground vehi-
cles (UGVs) are focused on creating an accurate internal rep-
resentation of the environment. Exteroceptive parameters such
as terrain colour and terrain slope have little value if the vehicle
cannot associate them with a value of cost/utility of movement.
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In the context of mobility maps a bound on velocities is desired
from experience data. For this to occur, exteroceptive states
(ẽ) such as terrain slopes must be related with action states
(ã) such as vehicle velocity. Given no additional information,
the two states are independent (ẽ ⊥ ã∣ /0). However, when the
appropriate proprioceptive feedback ( j̃) is observed, the two
become indirectly related (ẽ ∕⊥ ã∣ j̃). From the above assump-
tion, the ‘appropriate proprioceptive feedback’ is defined as
any random variable that is causally dependent on both envi-
ronmental factors and action states. The causal dependencies
are shown as a directed acyclic graph in Figure 3(a). The spe-
cific choice of variables for the problem at hand of interpreting
terrain slopes in shown in Fig 3(b) for concreteness.

(a) A directed graph to illustrate the definition of
valid proprioception for scene interpretation where
one requires causal influence by both exteroceptive
stimuli and agent actions.

(b) Choice of exteroception, proprioception and action
variables for the problem of interpreting terrain slopes
from range sensor measurements. (SlipL/R: Slip in left
and right tracks, SlopeX/Y: terrain slope in pitch and roll
directions)

Figure 3: Definition of valid proprioception and the variables
used for the specific problem investigated in this paper

Gathering experience corresponds to collecting co-
occurrent observations of ẽ, ã and j̃ in as many varied
conditions as possible5. This experience set (H) serves as
a training set for learning. The exploration philosophy for
collecting training data is to explore the natural feasibility of
vehicle behaviour in as many varied conditions as possible
either under manual or autonomous control. The latter has the
advantage of exploring controller limitations.

For experience-based scene interpretation, practicality of
collecting training data is critical. Exhaustive exploration of
behaviour is not practical for large platforms because of safety
concerns. Instead of treating the problem as an optimisation
over observed proprioceptive stimuli to determine optimal be-
havioural limits (which requires worst case exploration), the
problem can be relaxed to concentrate on suboptimal bounds
that capture the extent of behavioural feasibility. In such a
scenario, training data only needs to be collected within the
thresholds of feasibility. As a result data collection is practical
since the vehicle only explores what it can negotiate comfort-
ably. Unexplorable behaviour contributes to scene interpreta-
tion by indirectly informing about behaviour limitation.

For the skid-steered vehicle of interest, slip estimates are
chosen as proprioceptive feedback. The slip values cannot be
measured directly, so they are estimated with an Unscented
Kalman Filter (UKF) (Julier et al. 2000) using the two-track
process model mentioned in Le et al. (1997) (shown in Ap-
pendix B). The reason for using a Kalman Filter is to effi-
ciently deal with sensor noise. The test platform has an on-
board Inertial Navigation System (INS) which is used to sense
vehicle actions such as velocity with good accuracy. In addi-
tion, pitch and roll information from the INS are used to sense
the current terrain slope (exteroceptive conditions)6.

In the following subsections, the notation is summarised in
one place to provide easy reference to all the variables and then
the theory is subsequently introduced.

4.2 Nomenclature

x̃ - tilde is used to indicate that a particular variable is a vector.

ã - Action vector (velocity)

ẽ - Exteroceptive stimuli (terrain slopes)

j̃ - Proprioceptive stimuli (wheel slips): A vector of measures
that indicate dependence of performance on environmen-

5Existence of a stationary joint distribution p(ẽ, j̃, ã) is assumed. Therefore
the experience/training set is a collection of i.i.d. samples from the joint.

6The test platform used in this work does not have any suspension, so pitch
and roll information from the INS reflects the terrain slope accurately. For a
different platform with suspension, it is more appropriate to derive terrain
slopes from exteroceptive sensors.
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tal conditions and vehicle behaviour.

H - Experience set (training set)⎛
⎝

ẽ1 ẽ2 ⋅ ⋅ ⋅ ẽN
j̃1 j̃2 ⋅ ⋅ ⋅ j̃N
ã1 ã2 ⋅ ⋅ ⋅ ãN

⎞
⎠

J∗ - Feasible Proprioception Set -{ j̃∗1, j̃∗2, ⋅ ⋅ ⋅, j̃∗M}

This is the set of proprioceptive stimuli observed in
ideal conditions such as flat terrain in the case of terrain
slopes7. This set is used as an indication of feasibility.
Actions that have a high frequency of proprioceptive
response in the region of the J∗ set are considered to be
feasible.

Etest - Set of test conditions which need to be interpreted
(Test set) - {ẽtest1, ẽtest2, ⋅ ⋅ ⋅, ẽtestT}.

for example, the set of both horizontal and vertical
gradients for each grid cell form the set of test conditions
to interpret terrain slopes from an elevation map.

4.3 Problem Definition
There are two main steps to the problem which will be referred
to through out this paper.

Step 1: Identify a representation of j̃ which satisfies the de-
sired causal dependencies.

Step 2: Given a choice of j̃, perform proprioceptive scene in-
terpretation (discussed below).

Step 1 is covered in Section 5. The following section covers
Step 2 assuming that a correct representation of j̃ has been
identified and estimates or observations of those states are
available.

Before velocity limits can be derived from experience data,
an intermediate goal is to infer the feasible behaviour distribu-
tion for any test condition given the set of all past observations
(H) and the comfortable proprioception set (J∗) which is cho-
sen by the user to be observations in ideal/nominal conditions.
For interpreting slopes, observations from flat terrain condi-
tions are labelled as ideal and used as a reference. This process
can be intuitively understood as training the robot what to look
for (in proprioception) when exploring feasibility of actions in
unknown conditions.

7The choice of what corresponds to ideal conditions is a design variable
chosen by the user.

Once feasible behaviour distribution is inferred, an upper
bound using the cumulative density function (CDF) can deter-
mine velocity limits for use in mobility maps. The process of
deriving a mobility map given a set of test conditions is out-
lined in Algorithm 1.

Input: Elevation Map (A set of elevation values)
- Apply the Sobel operator (Gonzalez and Woods 2008) to
determine gradient maps in pitch and roll directions (Test
set−Etest ).
foreach ẽtest in Etest do

- Infer feasible behaviour distribution from past
experience (H & J∗)
- Determine behavioural limit (Maximum Feasible
Speed)

end
Output: Mobility Map (Set of all associated mobility

values ordered according to their respective test
condition in Etest)

Algorithm 1: Scene Interpretation Process For An Elevation
Map

Determining the feasible behaviour distribution is a con-
ditional density estimation problem. The feasible be-
haviour distribution for a selected environment condition is
p(ã∣ẽtest , i = 1)8 where i is an indicator variable to represent
the feasibility constraint j̃ ∈ J∗.

i =
{

1 j̃ ∈ J∗
0 j̃ /∈ J∗ (1)

p(ã∣ẽtest , i = 1)9 is a measure of confidence in taking an ac-
tion ã given past experience (H). Confidence for an action is
based on how often proprioception observed under that action
was within the set of proprioceptive stimuli observed in ideal
conditions (J∗) i.e. actions that generated stimuli in the region
of feasible proprioception J∗ are preferred. p(ã∣ẽtest , i= 1) can
be comprehended as the probability of any action satisfying
the constraint of j̃ ∈ J∗ in any given environmental condition.

8Equivalent to p(ã∣ẽtest , i = 1,H)- dependence on the training set H is not
shown for conciseness.

9It is preferable to model in action space (p(ã∣ẽtest , i = 1)) instead of pro-
prioception space (p(i = 1∣ẽtest , ã)) as in practice the training data samples are
overwhelmingly populated in the region of feasibility (i = 1) and any attempt
to model p(i = 0∣ẽtest , ã) would be inaccurate which is required to probabilis-
tically model in the i space. It is also undesirable to explore in infeasible
regions for safety concerns on large platforms. This relates to the argument
about worst case exploration made in the previous section.
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4.4 A Non-Parametric Approximation

In this section a hierarchical non-parametric10 approach
is presented to approximate the global conditional density
p(ã∣ẽtest , i = 1). Initially, an inner module approximates the
function ã = f (ẽ, j̃) within a Bayesian non-parametric frame-
work using Gaussian Processes. While the regression mod-
ule infers local conditional distributions, the global conditional
distribution is treated as a kernel density estimation problem
where the number of kernels grow as the number of elements
in the J∗ set grows. Together, the density p(ã∣ẽtest , i = 1) can
be adapted online as the sets J∗ and H grow.

The whole process is captured in the following equation
where the desired distribution is derived by marginalising
p(ã, j̃∣ẽ, i) over j̃.

p(ã∣ẽ, i = 1) =
∫

p(ã, j̃∣ẽ, i = 1)d j̃ (2)

=

∫
p(ã∣ẽ, j̃)p( j̃∣i = 1)d j̃ (3)

p( j̃∣i= 1) corresponds to the distribution of desired proprio-
ception. In this application, since one has access to M samples
of j̃ in the J∗ set (i.i.d. samples from p( j̃∣i = 1)), the above
equation can be approximated as a weighted sum of condi-
tional distributions at the observed j̃ locations.

p(ã∣ẽ, i = 1)≈ ∑
j̃i∈J∗

π j̃i p(ã∣ẽ, j̃ = j̃i) (4)

where π j̃i are mixing components;∑π j̃i = 1

If all samples in the J∗ set are given equal importance.

p(ã∣ẽ, i = 1)≈ 1
M ∑

j̃i∈J∗
p(ã∣ẽ, j̃ = j̃i) (5)

Equation 5 is in the form of kernel density estimation, but
with variable kernels, as p(ã∣ẽ = ẽtest , j̃ = j̃i) is inferred from
data. This can be viewed as an infinite mixture of conditional
densities as the number of components grows when the J∗ set
is allowed to grow. If the local conditionals are approximated
to be Gaussian then the global approximation turns out to be a
Gaussian mixture.

10Non-parametric techniques are preferred for learning from experience
(memory-based learning) problems as they make the least assumptions about
the global form of the distribution.

4.4.1 Gaussian Process Regression

Inferring the local conditional distribution p(ã∣ẽ, j̃ = j̃i) from
observed data at each j̃i location can be treated as a Bayesian
Regression problem ( f :

{
ẽ, j̃

}→ a) (Rasmussen and Williams
2006; Bishop 2006), where ẽ, j̃ are augmented together to form
the input vector x̃ and a is the output y.

ai = f (ẽi, j̃i)+ ε (6)

where

ε - Noise −N(0,β−1)

β − Noise precision

A Gaussian Process (GP) is completely specified by its co-
variance function K(x,x′) and its choice defines the space of
functions (latent variables - f ) that can be generated (Ras-
mussen and Williams 2006). Further, the output is assumed
to be zero mean. This is reflected in the prior over the latent
variables p( f ). Because of this zero mean assumption in GPs,
predictions are biased towards null behaviour region (zero) if
no data is observed in the test conditions. In the scene interpre-
tation problem, this translates to being cautious in unexplored
or underexplored environments which is desired.

P( f ) = N(0,K) - Prior On Functions (7)

where
f − latent variables
K(x,x′)− covariance function
x = {ẽ, j̃}− input values

The predictive distribution is a Gaussian with the following
form:

P(a∣ẽtest , j̃test ,H) = N(µ(x),var(x)) (8)

where

µ(x) = K(xtest ,X)[K(X ,X)+β−1IN ]
−1y

var(x) = Ktest,test +β−1 −KT
test [K +β−1IN ]

−1Ktest

H−{atrain, ẽtrain, j̃train}1...N −Training data
y−{atrain}1...N −Training outputs
X −{ẽtrain, j̃train}1...N −Training inputs
xtest −{ẽtest , j̃test}−Test input
Ktest = K(X ,xtest)

Ktest,test = K(xtest ,xtest)

For the scene interpretation problem, the commonly used
squared exponential covariance function is chosen. This
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choice has the stationarity property of associating observations
within a local neighbourhood which is desired.

K(x,x′) = σ2
f exp

(
− 1

2l2 (x− x′)2
)

(9)

The hyper-parameters of the GP θ = {l,σ f ,β−1} are
learned by maximising the log likelihood of the training data
(H) using a numerical optimisation technique.

GP regression is a discriminative approach, additional ex-
teroceptive or proprioceptive states could be augmented into
the input vector. This allows for incorporating additional sen-
sors or proprioceptive measures into the scene interpretation
process. However, the main limitation is the inversion of an
N ×N matrix ([K(X ,X)+β−1IN ]

−1) which is an O(N3) oper-
ation (where N is the size of the dataset). In the next section,
extensions to GP regression are discussed to address multi-
modality and scalability to large datasets.

4.4.2 Gaussian Process Extensions To Address Multi-
modality and Sparsity

The mapping from {ẽ, j̃} to ã can be multimodal as it is es-
sentially an inverse modelling problem. There can be multiple
actions that give rise to the same proprioceptive response.

In GP literature, multimodality has been addressed as infi-
nite mixture of Gaussian Process experts (iMoGPe) in Ras-
mussen and Ghahramani (2002) and Meeds and Osindero
(2006). The essential idea is to probabilistically cluster the
data points in the joint space of inputs and outputs before
stochastically assigning an individual GP model to each clus-
ter. In the version of Meeds and Osindero (2006) an infinite
Gaussian mixture model (Rasmussen 2000) is used as a gat-
ing function to stochastically weight the contribution of each
expert to any given input point for prediction. An appealing
property of this model is that the number of clusters is inferred
from the data with a Dirichlet process prior. Inference is per-
formed with MCMC techniques such as Gibbs sampling for
indicator variables and model parameters in conjunction with
Hybrid Monte Carlo sampling of the GP hyperparameters. Ex-
ample clustering results of sample multimodal datasets in 1D
and 2D are shown in Figures 4(a) and 11(b).

Since the main aim of this paper is to infer an upper bound
on velocities, it is sufficient to capture multimodality as noise
in the outputs. The variance estimate of the original GP model
(Equation 8) is a function of inputs only, the variance of the
outputs is assumed to be homogeneous and is estimated as a
hyperparameter. Heteroscedastic11 Gaussian Process models

11Heteroscedasticity is term used in statistic and GP literature to indicate
non-uniform noise levels. In contrast, homoscedasticity implies the uniform
noise assumption.

(Kersting et al. 2007; Goldberg et al. 1998) extend the ba-
sic GP model to deal with input dependent noise. They use
a second GP to model the log variance of the outputs from
the mean to predict local noise for any given test input. The
dual GP models of target and noise processes are optimised
iteratively in an Expectation-Maximisation (EM) like fashion.
This captures the variance in the outputs at any location as in-
put dependent noise. An example result on a 1D dataset with
homoscedastic and heteroscedastic models is shown in Fig-
ure 4(b). For this dataset it can be seen that the homoscedas-
tic noise assumption is undesirable as it causes the noise to
be inflated in some regions. This is corrected with the het-
eroschedastic model, which accounts for the locality in the
noise estimates.

The other limitation of the standard GP model is the cu-
bic computational complexity of matrix inversion. Sparse
approximations in Gaussian Processes is an active research
area (Quiñonero Candela and Rasmussen 2005). This section
only presents some approximations that scale well to the het-
eroscedastic problem on large datasets. An obvious approach
to address cubic complexity is to perform matrix inversion on
a smaller subset of the original data. A better approach is
to use the Projected Process (PP) approximation (Rasmussen
and Williams 2006) which in addition to retaining a subset
(m < n), projects the non-included data points into the basis
space spanned by the included points. This is achieved through
a likelihood approximation (q(y∣ fm) ≈ p(y∣ f )) derived from
the class of likelihood distributions that only depend on the
latent function values of the included subset ( fm). This ap-
proximation can be derived through minimisation of the KL-
divergence between the approximated posterior and the true
posterior (KL(q( f ∣y)∣∣p( f ∣y))) (Csató 2002). The key aspects
of the posterior approximation are shown below in Equation
10. The key factor in the approximation is the expectation of
latent values for the non-included subset (E( fn−m∣ fm)) given
the approximated posterior over the included latent function
values (q( fm∣y)).

p( f/y) ∝ p( f )p(y∣ f )≈ q( f ∣y) ∝ p( fm)q(y∣ fm) (10)

where
p(y∣ f ) = N( f ,β−1I)

q(y∣ fm) = N
([

fm
E( fn−m∣ fm)

]
,β−1I

)

n−dataset size
m− subset size
β − Noise precision

The PP approximation can be extended to the heteroscedas-
tic model of Kersting et al. (2007) and its prediction equations
are given below. An efficient Cholesky form implementation
of the PP approximation is presented in Seeger et al. (2003).
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(a) Infinite Mixture of Gaussian Process Experts: Addressing Multimodal-
ity
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sigma bound; solid line: mean estimate)

Figure 4: GP Extensions on a 1D example to addressing mul-
timodality and input dependent noise.

µ(x) = km(xtest)
T (Kmm +KmnR−1Knm)

−1KmnR−1y
var(x) = Ktest,test +R∗− km(xtest)

T K−1
mmkm(xtest)+ ...

km(xtest)
T (Kmm +KmnR−1Knm)

−1km(xtest)

where
Kmm = K(X1:m,X1:m)
Kmn = K(X1:m,X1:n)
km(xtest) = K(X1:m,xtest)
Ktest,test = K(xtest ,xtest)
R/R∗− training/test noise matrices (Heteroscedasticity)
R = R∗ = β−1I (Homoscedasticity)

It is quite common to choose the points in the subset via a
greedy selection based on heuristics that are indicative of the
novelty of a given input location (Csató 2002). However, for
multimodal distributions it is important to consider the joint
space of inputs and outputs instead of just input space novelty
as it is important to preserve the relative proportions of the
output values. For the problem at hand, it is better to use a
random selection instead of a greedy selection of the subset.

A related GP approximation technique that achieves the
same prediction equation of the Projected Process mean (µ(x))
but a different variance form (var(x)) is known as the Subset
of Regressors (SR) approximation (Rasmussen and Williams
2006). This approximation can be understood as a gener-
alised linear regression that models the mean process(µ(x))
as a weighted average of basis vectors with a Gaussian prior
on the weights (shown below).

µ(x) =
m
∑

i=1
αiK(xtest ,xi)

αm ∼ N(0,K−1
mm)

The Relevance Vector Machine (RVM) model of Tipping
(2001) can be derived from the SR approximation by assuming
a diagonal prior on the weights (αm ∼ N(0,diag(Kmm)

−1)).
Therefore, the RVM model can be thought of as a special case
of the Gaussian Process model with a degenerate covariance
function (Rasmussen and Williams 2006). The significant ad-
vantage of the RVM model is that the likelihood factorises into
an incremental form which leads to an accelerated training al-
gorithm presented in Tipping and Faul (2003). The model is
grown sequentially by a greedy selection of points that max-
imise the likelihood. Unlike the PP model, greedy selection is
not based on heuristics, instead the true likelihood is directly
maximised with sequential updates. In practice, the RVM
achieves excellent sparsity of orders of magnitude (m << n)
compared to other techniques. However, RVM training is only
fast for fixed covariance hyperparameters. When hyperparam-
eter updates are required the training speed suffers because of
a need to recalculate the BASIS (K) matrix at each parame-
ter update. However, training complexity still scales quadrat-
ically as opposed to the cubic complexity of the standard GP.
Regardless of training complexity, the prediction is very fast
because of the strong sparsity achieved. The heteroscedastic
model of Kersting et al. (2007) can be performed with RVM
models instead of the GP models. Example results of predic-
tion and the chosen relevant vectors from the RVM model are
shown in Figure 4(b).

The computation complexity of the different techniques pre-
sented in this section is outlined in Table 1. For the scene
interpretation problem it is acceptable to have slow training
time as this can be done offline. However, predictions need
to fast as they need to be performed online. Inference in the
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Table 1: Computational Complexity Of Different Extensions (it: iterations; n: data size; m: subset size; k: number of clusters)
Homoscedastic GP Heteroscedastic GP - PP Heteroscedastic RVM iMoGPe

Training O(n3) O(it ×2×n×m2) O(it ×2×m3) ≈ O(it × (n3/k))
Prediction O(n2) O(n×m2) O(m2) ≈ O(k× (n/k)2)

Storage O(n2) O(n×m) O(n×m) ≈ O(k× (n/k)2)

iMoGPe model is slow and does not have a good termination
criterion. The clustering results and convergence are sensi-
tive to the quality of the initial guess for the GP hyperparam-
eters. In practice, the MCMC sampling is performed for a
sufficiently long number of iterations to ensure convergence.
The cubic complexity of the matrix inversion is relaxed by the
clustering process. Even for small number of clusters (k ≈ 10)
this results in a notable speed up. However, the number of
iterations required for convergence is still very high (around
1000 iterations in our experiments) to scale to large datasets.
In comparison, the number of iterations for the heteroscedas-
tic models was small (less than 10 in our experiments). For
the above reasons, the heteroschedastic architecture is suffi-
cient for the scene interpretation problem to determine an up-
per bound. However it does not offer an alternative to the
iMoGPe model if the goal is to sample from the conditional
distribution.

A common criticism of the RVM and SR models is that
the degenerate covariance function leads to variance and mean
predictions at unseen locations collapsing to zero. In contrast,
variance predictions in unknown locations expand for the stan-
dard GP model. The interpretation of uncertainty estimates is
application dependent. For the scene interpretation problem,
the former is more desirable as the zero bias translates towards
having a preference for null behaviour in unseen locations.
Also in practice, since training is only performed on available
data, estimates of hyperparameters may cause extrapolation ar-
tifacts near the dataset boundaries regardless of the technique.
For the above reasons, the proprioceptive scene interpretation
algorithm is only performed on input locations presented in
the training data. The end result of upper bound values and
training locations are treated as a new training dataset for a
secondary RVM model. The advantage of this approach is two
fold. First, the zero mean bias of the RVM model in unseen
locations is exploited. Second, the resulting RVM model is
extremely sparse which makes it suitable for fast online pre-
dictions.

In summary, for the problem at hand of generating mobil-
ity maps the heteroschedastic GP model with the projected
process approximation is used for training and then a second
sparse RVM model is trained to be used for fast online predic-
tions. This choice of algorithms is evaluated in Section 9 and
its shown to be the best tradeoff in terms of modelling accuracy

and training complexity.

5 Information Theoretic Propriocep-
tion Validity Test

Validity of a proprioceptive representation ( j̃) is application
dependent. In practice, the initial choice of representation
is based on engineering insight into the physics of agent-
environment interactions. However, given the statistical nature
of agent-environment interactions and a data driven approach
to proprioception it is important to ascertain if sufficient in-
formation is available in the training data for the task at hand.
This section proposes an information theoretic test to address
the above by looking at dependencies observed in the expe-
rience data. More specifically for the problem addressed in
this paper, this test serves to justify the use of behavioural lim-
its derived from a given choice of proprioceptive measures for
scene interpretation.

The need for proprioceptive feedback was previously intro-
duced in Section 4.1 as a means to relate vehicle behaviours
with environmental conditions. Having access to valid propri-
oception provides a mechanism to analyse behaviour on dif-
ferent environmental conditions. For this reason, any random
variable that is causally dependent on both environment and
vehicle behaviour (shown in Figure 3(a)) is of initial interest.

The aim of a proprioceptive scene interpretation module is
to capture the relative difficulty between different environmen-
tal conditions. Difficulty of a condition is judged on the effort
required in adapting behaviour to negate environmental distur-
bances. To validate utility of a proprioceptive representation
( j̃) for scene interpretation, one needs to show that adapting
behaviour minimises environmental effects. Given experience
data, the sensitivity of j̃ to environmental factors (ẽ) can be
plotted with respect to actions (ã) using information theoretic
measures of statistical dependence. This trend can serve as
a visual tool to demonstrate that adapting behaviour regulates
environmental influence on proprioception.

More specifically the argument to validate a chosen propri-
oceptive representation is posed as follows. First, a proprio-
ceptive space is chosen according to domain knowledge such
as wheel slip or traction coefficients. Second, the dependence
trend between exteroceptive and proprioceptive measurements
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is plotted against actions (velocity) using information theoretic
measures. If a monotonic trend is observed it indicates that a
bound on velocity12 also corresponds to a bound on the envi-
ronment influence on proprioception. The above discussion is
summarised in the following proposition.

Proposition: Behaviour limits can be used to regulate
the influence of environmental effects on proprioception if
and only if a monotonic relationship is observed between
dependence(ẽ, j̃∣ã = ãi) and ã (see Figure 5).

Figure 5: Validity requires a monotonic relationship between
environment-proprioception (ẽ− j̃) dependence and the action
variable (ã). MI(., .) is mutual information which is used as a
measure of dependence.

For the problem addressed in this paper, a monotonic trend
implies that for low velocities the proprioceptive response is
relatively similar in different conditions. However, at higher
velocities the response varies widely on different conditions
indicating a high dependence on environment. Thus by limit-
ing velocities with an upper bound the volatility in propriocep-
tive response due to environmental effects is also bounded.

If the (ẽ− j̃) dependence trace is flat, it indicates that be-
havioural effects are negligible. Therefore the link between
actions and proprioception in Figure 3(a) could be ignored (as
in Angelova et al. (2006, 2007)). If the (ẽ− j̃) dependence
trace is arbitrary, then there is little to be gained with velocity
limits or a mobility based interpretation strategy either due to a
bad choice of proprioceptive representation or just insufficient
data collection in the given experience (training) data.

A common metric used to evaluate dependencies between
two random variables is mutual information. Similarly condi-
tional mutual information is used as a measure of conditional
dependence. In the above test, specific conditional mutual in-
formation [MI(ẽ, j̃∣ã = ãi)]

13 is used as a test of dependence
between ẽ and j̃ for a given ã = ãi. In this paper, a normalised

12Kinetic energy bounds could be used instead of velocities for higher di-
mensional actions.

13calculation of MI(ẽ, j̃∣ã = ãi) requires the joint p(ẽ, j̃∣ã = ãi). Given the
experience data it can be approximated with a discrete representation such as
a normalised histogram.

variant of the mutual information is used to compare between
alternative proprioceptive representations. This normalisation
is achieved by dividing mutual information by the log of the
joint space cardinality: NMI(X ,Y ) = MI(X ,Y )

/
log( ∣X ∣ ∗ ∣Y ∣ ).

6 Test Platform, Testing Environment
and Data Collection

The testing platform is a skid-steered vehicle (Figure 2). The
platform is equipped with sensors to measure wheel speed, en-
gine RPM, gearbox RPM and brake pressures. It also has an
onboard Inertial Navigation System (INS) with access to raw
accelerometer and gyro readings from the onboard IMU. The
testing environment has access to DGPS (Differential GPS)
corrections for the navigation module. The INS system along
with GPS/DGPS observations delivers very good localisation
(5cm accuracy) and vehicle actions such as velocity are avail-
able with good accuracy. Pitch and roll information from the
INS are used to sense terrain slope (exteroceptive conditions)
so that an elevation map can be interpreted from terrain gradi-
ents.

Training data was collected while executing 30 second ex-
ploration maneuvers in various terrain conditions. The explo-
ration maneuvers included an acceleration phase, a coasting
phase, a turning phase (both left and right turning) and a brak-
ing phase to ensure sufficient proprioceptive excitation. The
different terrain conditions include flat terrain, uphill, down-
hill, positive and negative side slope conditions on grass, and
a few runs over flat tarmac and a flat gravel road. The explo-
ration runs were repeated for three distinct behaviours (slow:
< 1m/s, normal: 1− 2m/s and fast: 2− 3m/s) on each of the
terrain conditions, so as to achieve sufficient exploration in be-
haviour space. In total, 20 minutes of data was collected at
20Hz.

7 Scene Interpretation Results
As mentioned in Section 4.3, there are two steps to the prob-
lem. Before the scene interpretation process can be imple-
mented, it is important to select a proprioceptive representation
that is conducive to the proposed scene interpretation strategy.
This can be achieved with the help of the validity test men-
tioned in Section 5.

7.1 Step 1: Choice of Proprioceptive Represen-
tation

Results of the validity test are shown in Figure 6 for three dif-
ferent proprioceptive representations shown below.
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∙ J̃SlipsOnly : {SlipL,SlipR}
∙ J̃µ ′sOnly : {µL,µR}−Traction Coefficients

∙ J̃All : {SlipL,SlipR,µL,µR}

The process models for estimating slip and traction esti-
mates in an UKF framework are given in Appendix B and C.

To compare the traces of the validity test in terms of mono-
tonicity, the slope of a linear functional fit on the bin values
is used (see Table 2), where the higher the slope the better the
monotonicity. The linear fit is shown in red in Figure 6. The
mutual information measure is normalised by the log of the
cardinality of the joint space to compare across different pro-
prioceptive representations.

From Figure 6 and Table 2, the slips-only representation is
seen to be the best performer in terms of monotonicity. On the
other hand, the traction coefficients are influenced more by the
environmental conditions (slopes) than behaviour as the trace
is more or less flat14. This is expected, as the traction coef-
ficients are mainly affected by the gravitational components
acting on the vehicle when it is on slopes. This is also due
to the fact that the vehicle was operated at low velocities in
low gear for safety reasons (< 3m/s or 10km/h). Based on the
monotonicity scores the slips-only proprioceptive representa-
tion {SlipL,SlipR} is chosen (see Figure 3(b)).

Table 2: Validity Test Monotonicity Scores For Different Pro-
prioceptive Representations

J̃SlipsOnly J̃µ ′sOnly J̃All

Fine Bin Size 0.0225 0.0132 0.0185
Coarse Bin Size 0.0203 0.0087 0.0161

7.2 Step 2: Mobility Map Generation
After a valid representation is chosen, the scene interpretation
process can be applied. Given training data, and the set of
test conditions, the extent of observed movement limitation for
each of the test condition needs to be derived. In this section,
laser data collected over 100x100m off-road terrain is used to
derive an elevation map shown in Figure 7 (top). The Sobel
operator (Gonzalez and Woods 2008) was applied to the eleva-
tion map image to derive pitch and roll gradients, that together
form the set of test conditions (Etest ). Each grid cell has its cor-
responding exteroceptive state (ẽtest : {slopePitch,slopeRoll})
value which needs to be associated with a corresponding ve-
locity limit.

14Note that the y-axis in Figure 6 is a dependency measure between ẽ and
j̃ conditioned on actions. A flat non-zero trace informs that there is a constant
dependence irrespective of actions.

Etest :
(

slopePitch1 slopePitch2 ⋅ ⋅ ⋅ slopePitchT
slopeRoll1 slopeRoll2 ⋅ ⋅ ⋅ slopeRollT

)

The slip estimate is two dimensional as observations from
the UKF using the two-track process model (see Appendix B)
consist of slip observations for both left and right tracks ( j̃ :{

slipLe f t ,slipRight
}
).

The set of all slip observations obtained from flat terrain
conditions are chosen to be the nominal proprioception set J∗.
Given the desired proprioception set and the experience data
from the training runs, a Gaussian Process with a squared ex-
ponential covariance function was optimised and the propri-
oceptive scene interpretation process described in Section 4.3
was implemented for the set of slope queries (Etest ) derived
from the gradient maps (see Figure 7).

Each slope condition query results in a Gaussian mixture
(see Equation 5). By selecting an upper bound on each condi-
tional distribution the maximum feasible speed is determined.
The upper bound can be determined from the cumulative den-
sity function. Also, a caching data structure is used to prevent
interpretation of the same condition twice. This significantly
improves the speed of the interpretation process.

The end result of such queries on an elevation map is a mo-
bility map shown in Figure 7. The mobility map interprets the
obstacles in the scene (trees) as untraversable with a velocity
limit of zero, and the rest of the traversable regions on a con-
tinuous scale between 0-7kmph. This is visualised with pixel
intensity, the brighter the pixel intensity, the easier it is to tra-
verse.

Mobility is defined in vehicle frame, the direction of move-
ment affects pitch and roll slopes which in turn affects mobility
values. In this paper, A∗ path planning is performed on a grid
based representation, hence eight possible directions for slope
are considered. Mobility for a given grid cell is a vector of
values pertaining to eight possible orientations. Only one such
mobility map is shown in Figure 7. All eight mobility maps
are shown in Figure 8. Particularly of interest are maps in
Subfigures 8(e) and 8(a), the values for going downhill (8(e))
are significantly smaller than going uphill (8(a)), indicating the
need for increased caution.

8 Path Planning For Slopes
In Figure 9, path planning over a vector of mobility maps is
compared with planning over a scalar cost map. This scalar
cost is the maximum gradient of all eight orientations, and the
corresponding ‘traversibility’ map is shown in Figure 8(i).
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(a) J̃SlipsOnly = {Sliple f t ,Slipright}
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(b) J̃µ ′sOnly = {µle f t ,µright}
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(c) J̃All = {µle f t ,µright ,Sliple f t ,Slipright}

Figure 6: Validity tests with two different bin sizes: X-axis = velocity(v-m/s) & Y-axis = NMI(ẽ, j̃∣a = vi)

The key benefit of the mobility maps with respect to plan-
ning is that the cost is orientation sensitive. To leverage this
benefit in the A∗ algorithm, the arc cost of a connection be-
tween two nodes was given as a function of the particular mo-
bility map associated with the direction of this arc. Figure 9(b)
demonstrates the desired sensitivity to platform configuration,
whereby the path

−→
AB, and the reverse path

−→
BA take different

routes, since the path taken to go downhill is treated differ-
ently from going uphill. In the scalar cost map case, shown in
Figure 9(a), the paths

−→
AB and

−→
BA are the same.

The A∗ paths in Figure 9 only offer heading commands and
no information about velocity, so the heuristic cost path in Fig-

ure 9(a) are usually operated with a constant speed preselected
for cautious navigation (usually about 1m/s or 3.6 km/hr for
the platform in question). For the second case, information
from the eight mobility maps can be used to regulate or bound
velocities. Average ‘maximum feasible speeds’ for the paths
in Figure 9(b) are 6.1121 km/hr in the forward path (white)
and 5.9079 km/hr in the backward path (green). These values
are an improvement from that of the cautious case as the mo-
bility values adjust to situations of caution by slowing down
and situations of confidence by speeding up.

In a separate experiment, controller performance is com-
pared for paths executed on the experimental platform on a
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Figure 7: Scene interpretation of an elevation map (∼ 100x120m at 0.5m grid resolution) derived from laser data (units of
mobility = km/hr). The mobility map shown assumes that the vehicle intends to travels in the downwards direction shown in
the pitch gradient map.

5∘ hill (see Figure 10(a)) with and without mobility informa-
tion. For a given set of four waypoints, A∗ was used to plan
across the heuristic scalar cost representation and across mo-
bility maps. The path given by the scalar frame work is exe-
cuted for constant values of velocity starting from 1m/s to 3m/s
(3.6 - 10.8km/h). In contrast the second path planned over mo-
bility maps uses values from the mobility maps to regulate ve-
locity. Figures 10(b) and 10(c) show the input waypoints, the
planned paths and the executed paths.

For this experiment, training data were collected under au-
tonomous control where the tuned controller is part of the sys-
tem. The control system was tuned on flat grass conditions,
hence it does not perform well in non-flat conditions (espe-
cially downhill where the system becomes significantly under-
damped for higher velocities)(see Extension 1). By perform-
ing the same scene interpretation process as before with this
new training data, the controller limitations are captured into
the mobility representation. In Table 3 the paths are compared

for average speed and tracking performance. Tracking perfor-
mance is judged by standard control theoretic metrics such as
root mean squared error (RMSE), L∞ norm (max error value)
and the L2 norm. It can be seen that the path over mobility
maps shows improved controller performance for similar aver-
age and maximum speeds as the path with the highest constant
velocity of 3m/s. The improvement in tracking performance
is more pronounced (shown in Table 4) for the case of travel-
ling downhill where controller limitations are prominent. This
improvement is due to the vehicle slowing down in downhill
conditions and speeding up on flat terrain.

While the results in Figure 9 illustrate the desired orienta-
tion sensitivity in paths, results in Table 3 show that controller
limitations are captured in the mobility representation and help
in regulating velocity to improve controllability. These results
illustrate that accounting for directional mobility are of bene-
fit for UGV planning. Use of mobility information leads to a
safer choice of paths with a reduced risk of excessive slippage,
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(e) Downhill
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(i) A scalar heuristic cost: max. possible
slope (brighter pixels have higher cost;
notice that unknown regions have high
cost)

Figure 8: Mobility Maps for eight possible vehicle headings (a-h) and an alternative scalar cost representation (i)

(a) A∗ path planning on heuristic cost map (path distance: 101m) (b) A∗ path planning on directional mobility maps (path distance:
121m forward and 109m backward)

Figure 9: Path planning on heuristic cost maps vs. directional mobility maps. [ start waypoint - ∙, goal waypoint - ∗, forward
path - solid line, backward path - dotted line]
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and improved controllability as the system automatically de-
cides on the feasible velocity of operation.

9 Choice of Regression Model

In Section 4.4.2, extensions to Gaussian Process regression
were presented to relax the homoscedastic unimodal assump-
tion. In this section, scene interpretation results for differ-
ent GP extensions are compared and their limitations are dis-
cussed.

For the task of deriving an upper bound, the accuracy of GP
extensions can be analysed on a toy multimodal dataset with
known upper bound. Such a dataset is shown in Figure 11(a).
Figure 11(c) shows the clustering results of the iMoGPe model
discussed in Section 4.4.2. The iMoGPe model separates the
different surfaces and fits a separate GP model for each cluster.
The plot in Figure 11(c) shows normalised mean squared error
(nMSE) of the predictions for different values of percentage
thresholds that are used to determine the upper bound15. The
predictions were performed for ten different random seeds and
the error bars for the nMSE are also shown. It can be seen
that iMoGPe has the best performance and the heteroscedastic
models perform better than the homoscedastic version. The
iMoGPe model gets more accurate for high values peaking at
80 percent, the inaccuracy and high variance at the low val-
ues is due to the gap in probabilistic mass between various
clusters. Both heteroschedastic RVM and heteroschedastic GP
models achieve similar accuracy. For a good choice of UB
threshold, heteroschedastic models can match the accuracy of
the iMoGPe model. The 70-75 percent threshold has the best
performance. This is expected because of the Chebyshev’s
inequality which states that approximately 70 percent of the
probability mass of a unimodal distribution lies between one
standard deviation from the mean.

In Figure 12, pair wise differences in the mobility maps
are shown for different models. Mobility maps under the
homoscedastic assumption lead to conservative estimates of
velocity bounds. The upper bound estimates are biased to-
wards lower values as they are visited more often than higher
values in data collection which leads to tight noise estimates
in training under the homoscedastic model. Figures 12(a),
12(b) and 12(c) show the change in mobility maps between
the homoschedastic GP and other models. At worst, the
velocity bounds in the homoscedastic model are lower than
other models by 1m/s (3.6 kmph). This bias is better ac-
counted when input-dependent noise is considered in the het-

15The upper bound is determined from the cumulative density function by
searching for an input that produces an output equal to the selected thresh-
old. Theoretically, this is a query from the quantile function (inverse of the
cumulative density function).

eroschedastic models. In comparison the difference maps in
Figures 12(d), 12(e) and 12(f) mostly have minimal differ-
ence values (< 0.2m/s (1kmph)) except at dataset boundaries
where different models lead to different extrapolation artifacts.
For a path planning application, it is the relative difference of
mobility between neighbouring states rather than the absolute
value that is of significance. The conservative estimates of
homoscedastic case can be justified for path planning if the
dataset is homogeneously multimodal. However, the assump-
tion breaks down if multimodality is non-stationary and het-
eroscedastic models are essential to deal with it.

In implementation, training under the heteroscedastic RVM
model has more tuning parameters than the heteroscedastic
GP model. Greedy selection of relevant vectors in the RVM
model is sensitive to random seeds when training is performed
on different subsets of the data. Modeling ambiguity is also a
problem in the iMoGPe model, where different initial guesses
for the hyperparameters caused the algorithm to give differ-
ent clustering solutions. In constrast, the Heteroscedastic GP
training algorithm has fewer tuning parameters and is less sen-
sitive to subset selections because of the projected process ap-
proximation. However, it was sensitive to the choice of subset
size. In our experiments, the subset size was chosen according
to available computing resources.

In an attempt to quantify model uncertainity due to sparse
exploration and subset training, different heteroscedastic mod-
els were trained 10 times on different subsets. Figure 13 shows
the resulting velocity bounds and their errorbars for pure pitch
and roll conditions. The worst case ambiguity in the upper
bounds can be seen to be around ±0.5m/s. The regions of
high variance are due to lack of training data in that region
and different training subsets lead to different interpolation ar-
tifacts. This modelling ambiguity is unavoidable in practice
and is a shortcoming of a data driven approach.

The training times for different models on a 2GHz PC in a
Matlab implementation are shown in Table 5. The iMoGPe is
the least feasible on large datasets. It took about 9 hours to
train on a subset size of 2000 points for 1000 iterations. In
the heteroscedastic case, the projected process approximation
gives the opportunity to control complexity with the choice
of subset size. The fusion of iMoGPe and projected process
approximation is complicated as it involves choosing subset
points in conjunction with determining the cluster label16. The
heteroscedastic RVM is faster to train than the GP version as
the subset size is grown incrementally. In our experiments the
subset size was around 100 datapoints and is learned intrinsi-

16Wood et al. (2008) present an incremental approach to iMoGPe which
can incorporate the projected process approximation in the form mentioned in
Csató (2002). However, the approach described in Wood et al. (2008) does
not consider hyperparameter updates. The full inference problem of selecting
a sparse subset, cluster label and hyperparameters is still an open problem
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Table 3: Trajectory following results: Average speed and tracking performance
Speed performance Cross track error performance

time(s) Mean Vel(m/s) Max. Vel(m/s) RMSE L∞ norm L2 norm
A∗+1m/s 130 0.95 1.70 1.15 2.34 158.65
A∗+2m/s 73 1.71 2.62 1.61 3.66 254.56
A∗+3m/s 65 1.99 3.41 2.14 5.69 536.04

A∗+Mobility Maps 64 2.07 3.29 1.98 4.54 360.03

Table 4: Trajectory following results for downhill only: Average speed and tracking performance
Speed performance Cross track error performance

time(s) Mean Vel(m/s) Max. Vel(m/s) RMSE L∞ norm L2 norm
A∗+1m/s 19 0.89 1.36 1.98 2.34 68.38
A∗+2m/s 10 2.02 2.48 2.35 3.66 106.51
A∗+3m/s 8 2.67 3.41 3.13 5.69 350.63

A∗+Mobility Maps 13 1.58 2.21 2.23 3.58 97.80

cally from the RVM model. As mentioned previously in Sec-
tion 4.4.2, for the purpose of scene interpretation it is accept-
able to have slow training time but fast online predictions are
important. Hence, a dual prediction strategy was suggested
where the velocity bounds are inferred at training locations
and a second RVM model is fitted to the inferred answers.
This RVM predictor model is shown for the heteroscedastic
GP model in Figure 14. The relevant vectors selected in the
model are also shown as black dots and their size is propor-
tional to their inferred weight. This model is downloaded onto
the vehicle for fast online predictions which is made possible
because of the excellent sparsity achieved (41 relevant vec-
tors).

10 Conclusion and Discussion

This paper presents a non-parametric learning technique to in-
terpret terrain slopes from wheel-slip observations, and de-
scribes the benefits of defining costs in behaviour space (as
behavioural limits). First, this enables experience-based learn-
ing and encapsulates platform and controller limitations in a
common representation. Second, behaviour dependent costs
can be created for aiding decision making, such as orientation
sensitive costs for UGV path planning. Finally, proprioceptive
feedback such as wheel slip can be incorporated and used to
learn effectively in complex environments.

An additional benefit for using proprioceptive feedback is
that it minimises input required from an expert. Instead of
providing low-level supervision on what decisions to make
in each condition, expert supervision is now concentrated on

higher level design choices of where to explore and what to
label as nominal/feasible operation. By looking at dependence
trends in the observations, questions about the validity of pro-
prioceptive feedback measures can be answered. Therefore, an
information theoretic test was proposed to validate the use of
vehicle slip observations to interpret terrain conditions. Also,
sparse approximations to non-parametric regression were dis-
cussed in order to make this work feasible for training on large
datasets and generating fast online predictions.

Although the experiments in this paper were concentrated
on interpreting terrain slopes from range sensor measure-
ments, additional terrain states such as colour and texture can
be incorporated without increase in complexity as GP regres-
sion is a discriminative modelling technique.

Non-parametric techniques and experience based learning
are a sensible approach in off-road unstructured conditions
where simplifying assumptions about the environment cannot
be made. They are practical for off-line analysis of sensor in-
formation to be used as prior data for path planning. More
importantly, they provide a theoretical approach to the process
of defining and generating costs.

In this current work, a simple upper bound on velocity was
used as a scene interpretative metric for combinatorial plan-
ning with A*. Temporal correlations between successive ve-
locities was not taken in account for decision making; for
that to be achieved mobility values can be used as instan-
taneous rewards into a Reinforcement Learning formulation.
Also, the validity test proposed in this work was confined to a
1D case. For more complicated platforms, the velocity limits
could be replaced with kinetic energy limits as an alternative
approach to capture control effort in agent-environment inter-
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(a) Trajectory test environment - A 5∘ Hill
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(b) A∗ Path on scalar heuristic cost and the executed trajectories with
different constant velocities
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(c) A∗ Path on mobility maps and the executed trajectory with mobility
values

Figure 10: Trajectory following experiment

Table 5: Training Times (M: subset size , N: dataset size)
Homoscedastic GP - PP Heteroscedastic GP - PP Heteroscedastic RVM iMoGPe

≈ 15minutes ≈ 1hour 20minutes ≈ 30minutes ≈ 9hours
Data Size: (M = 2000;N = 10000) (M = 2000;N = 10000) (M ≈ 100;N = 10000) (N = 2000)

Notes: Projection Process Approx. Projection Process Approx. Subset(M) is learned
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(a) Toy Dataset With Known Upper Bound (b) Clustering result under the iMoGPe model
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(c) nMSE vs. Upper Bound Threshold For Different Techniques

Figure 11: Choice of Regression Models for a Multimodal Dataset

actions. However in the future, it would be valuable to look
at higher dimensional problems, in conjunction with stochas-
tic trajectory planning algorithms that sample from behaviour-
centric conditional distributions such as the one proposed in
this work.
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Appendix A: Index to Multimedia Ex-
tensions

Extension Media Type Description
1 Video Controller performance

in downhill conditions

Appendix B: Process Model For Slip Es-
timation

Proprioceptive measures such as slip and traction coefficients
cannot be measured directly, so they are estimated with
an UKF. Previous work used such process models to try
and improve localisation for navigation (Julier 1996). In
contrast, for proprioception, good positioning solution is
assumed and estimators/observers are designed to monitor
the selected proprioceptive states at all times. Wong (2001)
defines longitudinal slip as the rotation of the tyre without
equivalent translatory progress when a wheel torque is applied:

slip(i) =
V −Rω

max(Rω,V )

where
V = Longitudinal Velocity
ω = Wheel Rate
R = Tyre Radius

In order to get slip estimates from an UKF, we use a slightly
modified version of the two-track kinematic model presented
in Le et al. (1997) aimed at tracked vehicles. This modified
version fixes the problem of poor observability when the ve-
hicle is stationary or close to stationary in the original model.
The UKF estimates slip given accurate GPS observations of
position. Further details can be found in Le et al. (1997) .

Ẋ =
R
2
(ωL +dωL +ωR +dωR)(cosφ − sinφ tanα) ;

Ẏ =
R
2
(ωL +dωL +ωR +dωR)(sinφ + cosφ tanα) ;

φ̇ =
R

WB
((ωR +dωR)− (ωL +dωL)) ;

dω̇L = ν1(t);
dω̇R = ν2(t);
α̇ = ν3(t);
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where
ν1(t),ν2(t),ν3(t)− noise inputs;
X −Northing

Y −Easting

φ −Heading

ωL,ωR −Wheel Rates

R−Tyre Radius

WB−Wheel Base

dωL,dωR −Wheel Rate Increments

iL =
−dωL

ωL

iR =
−dωR

ωR

iL, iR −Longitudinal Slip

α −Slip Angle

m−Vehicle Mass

Appendix C: Process Model For Trac-
tion Estimation

The extent of traction generated is usually described in terms
of adhesion/traction coefficients which are defined as the ratio
of resultant tractive forces with the normal loads exerted on
the ground by the vehicle:

µ =
F
Fz

=
Traction

Normal Load

Similar to the kinematic two-track model, a dynamic ver-
sion can be used to estimate traction coefficients given accu-
rate measurements of velocity and turnrate from the navigation
system.

V̇ =
1
m
(µLFZL + µRFZR)−gsin(β );

ψ̇ =
TW
2I

( µRFZR −µLFZL)−blψ ;

µ̇L = ν1(t);
µ̇R = ν2(t);

where
V −Longitudinal Velocity

ψ −Turnrate

VL,VR −Track Velocities

FZL,FZR −Normal loads

TW −Track Width

I − Moment o f Inertia

β −Pitch

µL,µR −Traction Coe f f icients

ν1(t),ν2(t)− noise inputs;
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