
1

Scan-SLAM: Combining EKF-SLAM and Scan

Correlation

Juan Nieto, Tim Bailey and Eduardo Nebot

ARC Centre of Excellence for Autonomous Systems (CAS)
The University of Sydney, NSW, Australia
{j.nieto,tbailey,nebot}@acfr.usyd.edu.au

Summary. This paper presents a new generalisation of simultaneous localisation
and mapping (SLAM). SLAM implementations based on extended Kalman filter
(EKF) data fusion have traditionally relied on simple geometric models for defin-
ing landmarks. This limits EKF-SLAM to environments suited to such models and
tends to discard much potentially useful data. The approach presented in this paper
is a marriage of EKF-SLAM with scan correlation. Instead of geometric models,
landmarks are defined by templates composed of raw sensed data, and scan cor-
relation is shown to produce landmark observations compatible with the standard
EKF-SLAM framework. The resulting Scan-SLAM combines the general applicabil-
ity of scan correlation with the established advantages of an EKF implementation:
recursive data fusion that produces a convergent map of landmarks and maintains
an estimate of uncertainties and correlations. Experimental results are presented
which validate the algorithm.
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1.1 Introduction

A mobile robot must know where it is within an environment in order to navi-
gate autonomously and intelligently. Self-location and knowing the location of
other objects requires the existence of a map, and this basic requirement has
lead to the development of the simultaneous localisation and mapping (SLAM)
algorithm over the past two decades, where the robot builds a map piece-wise
as it explores the environment. The predominant form of SLAM to date is
stochastic SLAM as introduced by Smith, Self and Cheeseman [11]. Stochas-
tic SLAM explicitly accounts for the errors that occur in sensed measurements:
measurement errors introduce uncertainties in the location estimates of map
landmarks which, in turn, incur uncertainty in the robot location estimate,
and so the landmark and robot pose estimates are dependent. Practical imple-
mentations of stochastic SLAM represent these uncertainties and correlations
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with a Gaussian probability density function (PDF), and propagate the un-
certainties using an extended Kalman filter (EKF). This form of SLAM is
known as EKF-SLAM [6]. One problem with EKF-SLAM is that requires the
sensed data to be modelled as geometric shapes, which limits the approach to
environments suited to such models.

This paper presents a new approach to SLAM which is based on the in-
tegration of scan correlation methods with the EKF-SLAM framework. The
map is constructed as an on-line data fusion problem and maintains an esti-
mate of uncertainties in the robot pose and landmark locations. There is no
requirement to accumulate a scan history. Unlike previous EKF-SLAM im-
plementations, landmarks are not represented by simplistic geometric models,
but rather are defined by a template of raw sensor data. This way the fea-
ture models are not environment specific and good data is not thrown away.
The result is Scan-SLAM that uses raw data to represent landmarks and
scan matching to produce landmark observations. In essence, this approach
presents a new way to define generic observation models, and in all other
respects Scan-SLAM behaves in the manner of conventional EKF-SLAM.

The format of this paper is as follows. The next section presents a review of
related work. Section 1.3 describes a sum of Gaussians (SoG) representation
for scans of range-bearing data, based on the work presented in [1, Chapter
4]. Section 1.4 presents a method for obtaining a Gaussian likelihood function
from the scan correlation procedure, which produces an observation in a form
compatible with EKF-SLAM. Section 1.5 describes the generic observation
model that is applied to all feature observations obtained by scan correlation.
Section 1.6 presents Scan-SLAM, which uses the developments of Sections
1.4 and 1.5 to implement a scan correlation based observation update step
within the EKF-SLAM framework. The method is validated with experimental
results. Finally, conclusions are presented in Section 1.8.

1.2 Related Work

A significant issue with EKF-SLAM [4] is the design of the observation model.
Current implementations require landmark observations to be modelled as
geometric shapes, such as lines or circles. Measurements must fit into one of
the available geometric categories in order to be classified as a feature, and
non-conforming data is ignored. The chief problem with geometric observation
models is that they tend to be environment specific, so that a model suited
to one type of environment might not work well in another and, in any case,
a lot of useful data is thrown away.

An alternative to geometric feature models is a procedure called scan cor-

relation, which computes a maximum likelihood alignment between two sets
of raw sensor data. Thus, given a set of observation data and a reference
map composed similarly of unprocessed data points, a robot can locate itself
without converting the measurements to any sort of geometric primitive. The
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observations are simply aligned with the map data so as to maximise a cor-
relation measure. Scan correlation has primarily been used as a localisation
mechanism from an a priori map [13, 8, 3, 9], with the iterated closest point

(ICP) algorithm [2, 10] and occupancy grid correlation [5] being the most
popular correlation methods.

Two significant methods have been presented that perform scan correlation
based SLAM. The first [12] uses expectation maximisation (EM) to maximise
the correlation between scans, which results in a set of robot pose estimates
that give an “optimal” alignment between all scans. The second method [7]
accumulates a selected history of scans, and aligns them as a network. This
approach is based on the algorithm presented in [10].

The main concern with these methods is that they do not perform data
fusion, instead requiring a (selected) history of raw scans to be stored, and they
are not compatible with the traditional EKF-SLAM formulation. This paper
presents a new algorithm that combines EKF-SLAM with scan correlation
methods.

1.3 Scan Matching using Gaussian Sum Representation

A set of point measurements may be represented as a sum of Gaussians. This
representation permits efficient correlation of two scans of data, and has a
Bayesian justification which ensures that, under certain conditions, the scan
alignment estimate is consistent (see [1]). SoG correlation also avoids limita-
tions inherent to occupancy grid and ICP correlation methods; these being
fixed-scale granularity and point-to-point data associations, respectively.

For a set of range-bearing measurements, such as a range-laser scan, the
measurements and their uncertainties are first converted to sensor-centric
Cartesian space. That is, a range-bearing measurement zi = (ri, θi) with
Gaussian uncertainty Ri, is converted to Cartesian coordinates

xi = f (zi) =

[

ri cos θi

ri sin θi

]

Pi = ∇fzi
Ri∇fT

zi

where the Jacobian ∇fzi
= ∂f

∂zi

.
We define an n-dimensional Gaussian as

g(x; p̄,P) ,
1

√

(2π)n |P|
exp

(

−
1

2
(x − p̄)T P−1(x − p̄)

)

where p̄ and P are the mean and covariance, respectively. An n-dimensional
sum of Gaussians (SoG) is defined as the sum of k scaled Gaussians.

G(x) ,

k
∑

i=1

αig(x; p̄i,Pi)
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Fig. 1.1. The left-hand figure shows the set of raw range-laser data points trans-
formed to a sensor-centric coordinate frame. The right-hand figure shows the SoG
representation of this scan.

where, for a normalised SoG, the sum of the scaling factors αi is one. However,
normalisation is not necessary for correlation purposes—only relative scale is
important—and it is more convenient to work with non-normalised SoGs. An
example of a SoG produced from a range-laser scan is shown in Fig. 1.1.

Given two scans of Cartesian data points, where each point has a mean
and variance, the respective scans may be represented by two SoGs.

G1(x) =

k1
∑

i=1

αig(x; p̄i,Pi)

G2(x) =

k2
∑

i=1

βig(x; q̄i,Qi)

A likelihood function for the correlation of these two SoGs is given by their
cross-correlation.

Λ(x) = G1(x) ? G2(x)

=

∫ k1
∑

i=1

αig(u − x; p̄i,Pi)

k2
∑

j=1

βjg(u; q̄j ,Qj)du

=

k1
∑

i=1

k2
∑

j=1

αiβjγij (x) (1.1)

where γij (x) is the cross-correlation of two Gaussians g(x; p̄i,Pi) and g(x; q̄j ,Qj).

γij (x) =
1

√

(2π)n |Σ|
exp

(

−
1

2
(x − µ̄)T Σ−1(x − µ̄)

)
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µ̄ = p̄i − q̄j

Σ = Pi + Qj

The result is a likelihood function that provides a measure of scan align-
ment, and a maximum-likelihood alignment can be obtained as

xM = arg max
x

Λ(x) (1.2)

where pose xM is the maximum-likelihood location of scan 1 with respect to
scan 2. More precisely, xM is the location of the coordinate frame of scan 1
with respect to the coordinate frame of scan 2.

Full details of Gaussian sum correlation can be found in [1, Section 4.4]. In
particular, it describes SoG scaling factors, SoG correlation in a plane (with
alignment over position and orientation), and various alternatives for efficient
implementation.

1.4 Scan Correlation Variance

For scan correlation to be compatible with EKF-SLAM, it is necessary to
approximate the correlation likelihood function in (1.1) by a Gaussian. This
section presents a method to compute a mean and variance for scan correlation
based on the shape of the likelihood function in the vicinity of the point of
maximum-likelihood. The resulting approximation is reasonable because the
likelihood function tends to be Gaussian in shape in the region close to the
maximum-likelihood.

The first step in deriving this approximation is to compute the variance
of a Gaussian function given only a set of point evaluations of the function.
Given a Gaussian PDF

g(x; p̄,P) =
1

√

(2π)n |P|
exp

(

−
1

2
(x − p̄)T P−1(x − p̄)

)

the maximum-likelihood value is found at its mean

g(p̄; p̄,P) =
1

√

(2π)n |P|
= CM

Any other sample xi from this distribution will have the value

g(xi; p̄,P) = CM exp

(

−
1

2
(xi − p̄)T P−1(xi − p̄)

)

= Ci

By taking logs and rearranging terms, we get

(xi − p̄)T P−1(xi − p̄) = −2(ln Ci − lnCM ) (1.3)
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Thus, given a set of samples {xi} and their associated function evaluations
{Ci}, along with the maximum-likelihood parameters p̄ and CM , then the
inverse covariance matrix P−1 (and hence P) can be evaluated. The only
requirement is that the number of samples equals the number of unknown
elements in P−1.

In this paper, we are concerned with 3-dimensional Gaussians, (i.e., to
represent the distribution of a landmark pose [xL, yL, φL]T ), and so we present
the full derivation of variance evaluation for this case. We define the following
variables

C
′

i = −2(ln Ci − lnCM )

xi − p̄ = [xi, yi, zi]
T

P−1 =





a b c
b d e
c e f





Substituting these into (1.3) and expanding terms gives

x2

i a + 2xiyib + 2xizic + y2

i d + 2yizie + z2

i f = C
′

i (1.4)

The result is an equation with six unknowns (a, . . . , f), and so a solution
can be found given six samples from the Gaussian. This is posed as a matrix
equation of the form

Ax = b

where the i-th row of A is [x2

i , 2xiyi, 2xizi, y
2

i , 2yizi, z
2

i ], x is the unknowns

[a, b, c, d, e, f ]T , and b is the set of solutions {C
′

i}. For a Gaussian function,
the solution of this system of equations gives the exact covariance matrix of
the function.

Since the scan correlation likelihood function is not exactly Gaussian (al-
though we presume it has approximately Gaussian shape near the maximum
likelihood location), different sets of samples will produce different values for
P. To reduce this variation, we evaluate more than the minimum number of
samples and compute a least-squares solution using singular value decompo-

sition (SVD), which results in a much more stable covariance estimate.
In summation, two SoGs are aligned according to a maximum likelihood

correlation, to give the pose xM between scan coordinate frames. A number
of samples, N > 6, from the region near xM are evaluated and the alignment
variance PM is computed by SVD. At a higher level of abstraction, the re-
sult of this algorithm can be described by the following pseudocode function
interface

[xM, PM] = scan_align(G1(x),G2(x), x0)

where x0 is an initial guess of the pose of G1(x) relative to G2(x). A good
initial pose is required to promote reliable convergence.
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1.5 Generic Observation Model

We define a landmark by a SoG in a local landmark coordinate frame, and the
Scan-SLAM map stores a global pose estimate of this coordinate frame in its
state vector (see Section 1.6 for details). Thus, all observations of landmarks
obtained by scan matching can be modelled as the measurement of a global
landmark frame xL as seen from the global vehicle pose xv (see Fig. 1.2).

The generic observation model for the pose of a landmark coordinate frame
with respect to the vehicle is as follows.

z = [xδ, yδ, φδ]
T = h (xL,xv)

=





(xL − xv) cos φv + (yL − yv) sin φv

−(xL − xv) sin φv + (yL − yv) cos φv

φL − φv





(1.5)

1.6 Scan-SLAM Update Step

When an object is observed for first time, a new landmark is created. A
landmark definition template is created by extracting from the current scan
the set of measurements that observe the object. These measurements form
a SoG, which is transformed to a coordinate frame local to the landmark.
While there is no inherent restriction as to where this local axis is defined,
it is more intuitive to locate it somewhere close to the landmark data-points
and, in this paper, we define the local coordinate frame as the centroid of the
template SoG. A new landmark is added to the SLAM map by adding the
global pose of its coordinate frame to the SLAM state vector. Note that the
landmark description template is not added to the SLAM state and is stored
in a separate data structure.

As new scans become available, the SLAM estimate of existing map land-
marks can be updated by the following process. First, the location of a map

Fig. 1.2. All SoG features are represented in the SLAM map as a global pose identi-
fying the location of the landmark coordinate frame. The generic observation model
for these features is a measurement of the global landmark pose xL with respect to
the global vehicle pose xv. The vehicle-relative observation is z = [xδ, yδ, φδ]

T .
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landmark relative to the vehicle is predicted to determine whether the land-
mark template SoG GL(x) is in the vicinity of the current scan SoG Go(x).
This vehicle-relative landmark pose is the predicted observation ẑ according
to (1.5). If the predicted location is sufficiently close to the current scan, the
landmark template is aligned with the scan using the SVD correlation algo-
rithm, using ẑ as an initial guess (see Fig. 1.3).

[z, R] = scan_align(GL(x), Go(x), ẑ)

The result of scan alignment gives the pose of the landmark template frame
with respect to the current scan coordinate frame, which is defined by the
current vehicle pose. This is the new landmark observation z with uncertainty
R, in accordance with the generic observation model in (1.5). Having obtained
the observation z and R, the SLAM state is updated in the usual manner of
EKF-SLAM.

Fig. 1.3. The top figure shows a stored scan landmark template (solid line) and
a new observed scan (dashed line). The bottom figure shows the scan alignment
evaluated with the scan correlation algorithm from which the observation vector z

is obtained.

1.7 Results

This section presents simulation and experimental results of the algorithm
presented. The importance of the simulation results is in the possibility to
compare the actual objects position with the estimated by Scan-SLAM.

Fig. 1.4 shows the simulation environment. The experiment was done in
a large area of 180 by 160 metres with a sensor field of view of 30 metres.
The vehicle travels at a constant speed of 3m/s. The sensor observations
are corrupted with Gaussian noise with standard deviations 0.1 metres in
range and 1.5 degrees in bearing. The simulation map consists of objects with
different geometry and size. In order to select the segments to be added into
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the navigation map, a basic segmentation algorithm was implemented that
selects sensor segments that contain a minimum number of neighbour points.

The results for the Scan-SLAM algorithm are shown in Fig. 1.4. Here the
solid line depicts the ground truth for the robot pose and the dashed line
the estimated vehicle path. The actual object’s position is represented by the
light solid line and the segment’s position by the dark points. The local axis
pose for each scan landmark is also shown and the ellipses indicate the 3σ
uncertainty bound of each scan landmark. The local axis position was defined
equal to the average position of the raw points included in the segment and the
orientation equal to the vehicle orientation. Fig. 1.5 shows the result after the
vehicle closes the loop and the EKF-SLAM updates the map. The alignment
between the actual object’s position and that estimated by the algorithm after
closing the loop can be observed.
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Fig. 1.4. The figure shows the simulation environment. The solid line depicts the
ground truth for the robot pose and the dashed line the estimated vehicle path.
The actual object positions are represented by the light solid line and the segment
positions by the dark points. The ellipses indicate the 3σ uncertainty bound of each
scan landmark.

The algorithm was also tested using experimental data. In the experiment
a standard utility vehicle was fitted with dead reckoning and laser range sen-
sors. The testing environment was the car park near the ACFR building. The
environment is mainly dominated by buildings and trees. Fig. (1.6) illustrates
the result obtained with the algorithm. The solid line denotes the trajec-
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Fig. 1.5. Simulation result after closing the loop.

tory estimated. The light points is a laser-image obtained using feature-based
SLAM and GPS, which can be used as a reference. The dark points represent
the template scans and the ellipses the 1σ covariance bound. The local axis for
the scan landmarks were also drawn in the figure. The segmentation criterion
was also based on distance. Seven scan landmarks were incorporated and used
for the SLAM.

1.8 Conclusions and Future Work

EKF-SLAM is currently the most popular filter used to solve stochastic
SLAM. An important issue with EKF-SLAM is that it requires sensory in-
formation to be modelled as geometric shapes and the information that does
not fit in any of the geometric models is usually rejected. On the other hand,
scan correlation methods use raw data and are not restricted to geometric
models. Scan correlation methods have mainly be used for localisation given
an a priori map. Some algorithms that perform scan correlation based SLAM
have appeared, but they do not perform data fusion and they require storage
of a history of raw scans.

The Scan-SLAM algorithm presented in this paper combines scan correla-
tion with EKF-SLAM. The hybrid approach uses the best of both paradigms;
it incorporates raw data into the map representation and so does not require
geometric models, and estimates the map in a recursive manner without the
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Fig. 1.6. Scan-SLAM result obtained in the car park area. The solid line denotes the
trajectory estimated. The light points is a laser-image obtained using feature-based
SLAM and GPS. The dark points represent the template scans and the ellipses the
1σ covariance bound.

need to store the scan history. It works as an EKF-SLAM that uses raw data
as landmarks and utilises scan correlation algorithms to produce landmark
observations. Finally experimental results were presented that showed the ef-
ficacy of the new algorithm.

In terms of future research, there is a lot of scope for developing the data
association capabilities that arise from combining scan correlation with EKF-
SLAM metric constraints. The ability of batch data association within an
EKF framework to reject spurious data is well developed (e.g., [1, Chapter
3]). Scan correlation has the potential to strengthen the rejection of outliers
by matching consecutive sequences of scans and removing points that are not
reobserved. Also, scan correlation provides a measure of how well the shape of
one scan fits another and can reject associations that have compatible metric
constraints but misfitting shape.

A second area for future work is the development of continuously improv-
ing landmark templates. As a landmark is reobserved, perhaps from different
view-points, the template model that describes it can be refined to better
represent the object.
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