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ABSTRACT

In this paper we investigate the use of Exponential Mixture
Densities (EMDs) as suboptimal update rules for distributed
data fusion. We show that EMDs have a pointwise bound
“from below” on the minimum value of the probability dis-
tribution. However, the distributions are not bounded from
above and thus can be interpreted as a fusion operation.

1. INTRODUCTION

One of the key enabling technologies for sensor networks is
distributed data fusion. A sensor network consists of a set of
fusion nodes. A node received information collected locally
(from sensors) and remotely (from other fusion nodes). This
information is fused and the estimates are distributed to other
nodes. To maintain scalability and robustness, nodes should
only maintain local knowledge of the network: the only in-
formation they have about the network topology is their list
of neighbours. However, because estimates rather than obser-
vations are distributed between nodes, the information is not
conditionally independent. There are several reasons for this
including commonality of process noise (in the target motion)
and the fact that nodes repeatedly fuse the estimates they re-
ceive from their neighbours.

In such circumstances, fusion can take place using a mod-
ified form of Bayes Rule [1]. Let A and B be two nodes
in the network. At time step k node A constructs its esti-
mate P
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b . In gen-
eral the sets are not disjoint; they contain common informa-
tion and are thus not independent of one another. The update
rule [1]
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divides by the common information and thus “cancels it out”.
In principle P
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can be calculated by main-

taining the probability density between the states of all nodes

in the entire network. Local algorithms have been derived in
the special cases that the network is fully-connected [2] or
tree-connected [3, 4]. However, if the network topology con-
tains cycles, no local algorithm exists [5] and approximations
of (2) must be used.

In this paper we consider the problem of developing a fu-
sion algorithm which yields an estimate which is guaranteed
to satisfy some notion of consistency. This problem was first
considered by Uhlmann in the context of SLAM [6] who de-
veloped an algorithm known as Covariance Intesection (CI).
CI was derived by considering the first two moments of the
estimates to be fused and it generates an estimate such that
the mean squared error in the estimate is never underesti-
mated. However, CI can only utilise the first two moments of
the distribution; it cannot exploit any other information such
as a probabilistic description of the prior states. Seeking to
generalise CI, both Mahler [7] and Hurley [8] noted that, if
one assumes the estimates are Gaussian distributed, the CI
update is equivalent to constructing the Exponential Mixture
of the two densities. Empirical tests suggest that the algo-
rithm yields usable estimates in distributed fusion networks
with cycles [9, 10]. However, little theoretical analysis has
been carried out to determine if EMDs truly offer a means of
“robustly” fusing estimates which contain unknown depen-
dencies and, if so, what notion of “robustness” is preserved.

This paper performs some preliminary analysis of the the-
oretical properties of EMDs and discusses how they might be
related to robust fusion problems. Section 2 introduces the
EMD and discusses some of its use in the literature and some
of the properties which have been identified. Most of these re-
sults are in terms of Kullback-Liebler divergence. The inter-
pretation of these results to inference problems is not always
clear. Therefore, in Section 3 we derive pointwise bounds and
discuss the relevance of these for fusion problems. The results
are discussed in Section 4.

2. EXPONENTIAL MIXTURE DENSITIES

The exponential mixture density takes a logarithmic convex
combination of the input estimates. Rewriting (1) using the



more compact notation

Pc (x) ∝ Pa (x) Pb (x)
Pa

T

b (x)
, (2)

the Exponential Mixture Density (EMD) is

Pc (x) =
1

Nc
Pa (x)ω

Pb (x)(1−ω)
. (3)

The free parameter ω ∈ [0, 1] is chosen to minimise some
measure of uncertainty in Pc (x). Nc is the normalising con-
stant and its value is given by

Nc =
∫

Pa (x)ω
Pb (x)1−ω

dx.

The EMD arises in two distinct contexts: logarithmic opin-
ion pools and bounds on the Bayes Probability of Error in
signal detecton and hypothesis testing.

2.1. Logarithmic Opinion Pools

Logarithmic opinion pool are a method used to perform ex-
pert fusion [11]. Expert fusion occurs when the output of a
set of inference algorithms, each optimised to detect different
classes or events, are to be fused together. Each expert utilises
the same observations and the estimates are thus not indepen-
dent. Let Pα(x) be the probability distribution generated by
the αth expert and let D(·‖·) be the Kullback-Leibler diver-
gence. The opinion pool constructs the estimate Pc (x) such
that

Pc (x) = arg min
Pc(x)

∑
wαD (Pc (x) ‖Pα(x))

where the weights wα are chosen to reflect the confidence in
expert α. Under the constraint that Pc (x) is normalised, it
can be shown that the result is the EMD. Heskes describes
a method for calculating the weights which attempts to min-
imise the Kullback-Leibler divergence between the true prob-
ability distribution and Pc (x) [11]. He also proves that the
Kullback-Leibler divergence of the logarithmic opinion pool
cannot exceed the average Kullback-Leibler divergence of the
individual experts, showing that fusion improves the perfor-
mance of the recognition algorithm.

2.2. Upper Bound on Bayes Probability of Error

The second main use for EMDs are in hypothesis testing and
signal detection [12–14]. Given a two class problem, with
hypotheses Ha and Hb such that

Ha :x ≈ Pa (x)
Ha :x ≈ Pb (x)

each with a prior probability πa = πb = 1
2 , it can be shown

that the lower bound on the Bayes Probability of Error, P (e),

is P (e) ≤ Nc for all ω ∈ [0, 1] [12]. Cover and Thomas
proved that, if Pa (x) and Pb (x) are discrete and the decision
regions are convex, the upper error could be achieved if the
samples were distributed according to (3) [13] and the value
of ω = ω� was chosen such that

D (Pc (x) ‖Pa (x)) = D (Pc (x) ‖Pb (x))

In other words, the EMD is equi-distant from both Pa (x) and
Pb (x). This work was extended by Dabak, who considered
the problem of building robust detectors. He proved that (3)
is an exponential curve in the set of all probability measures
absolutely continuous with respect to Pa (x) and Pb (x) [14].
It encodes the transformations over which the performance of
the optimal detector remains unchanged. Furthermore, these
results assume nothing about the independence of observa-
tions in the detection tests. Therefore, it relaxes the assump-
tions that the distribution is discrete and the decision region is
convex. Furthermore, it does not rely on the assumptions that
the observations are independently and identically distributed
or that the distributions have to be parametric.

The above review suggests that EMDs have a number of
properties which make them advantageous as a basis for ro-
bust fusion algorithms. First, they have been used in fusion
problems (expert fusion) where multiple dependent probabil-
ities must be fused together. Second, the have a strong con-
nection with information theory and have the ability to en-
code “worst case” distributions for fusion and inference prob-
lems. Finally, the computational form is particularly attractive
— because it resembles Bayes Rule, many nonlinear filtering
methods (such as particle filters) could be adapted to use this
form.

However, although the previous analysis has shown that
the performance measures can be defined in terms of the Kullback-
Leibler divergence we seek stronger conditions to identify
what is robust in these algorithms. Our preliminary analysis
has identified pointwise bounds induced by the EMD.

3. POINTWISE BOUNDS INDUCED BY EMDS

In this section we identify pointwise lower and upper bounds
on EMDs and argue that these can be used to define notions
of consistency and fusion.

3.1. Lower Bounds and a Notion of Consistency

Let P ′
c (x) be the unnormalised probability density function,

P ′
c (x) = Pa (x)ω

Pb (x)1−ω
. (4)

Theory 1. P ′
c (x) always lies between Pa (x) and Pb (x),

min{Pa (x) , Pb (x)} ≤ P ′
c (x) ≤ max{Pa (x) , Pb (x)}∀x.

(5)



Proof. Suppose Pa (x) ≤ Pb (x) and consider the lower bound:

Pa (x) ≤ Pa (x)ω
Pb (x)1−ω

.

Dividing both sides by Pa (x),

1 ≤
(

Pb (x)
Pa (x)

)1−ω

.

Since Pb (x) > Pa (x) and ω ≤ 1, the inequality holds true.
Similarly, the upper bound is

Pa (x)ω
Pb (x)1−ω ≤ Pb (x) .

Dividing through by Pb (x) leads to

(
Pa (x)
Pb (x)

)ω

≤ 1.

Since Pb (x) > Pa (x) and ω ≥ 0, this inequality holds true.

The above inequality on the unnormalised distribution P ′
c (x)

can be used to derive an inequality on the normalised distri-
bution Pc (x).

Theory 2. Pc (x) obeys the inequality [14, 15] that

Pc (x) ≥ min {Pa (x) , Pb (x)} ∀x. (6)

Proof. From the lower inequality in (5), the only way in which
(6) can be violated is if Nc > 1. Now, P ′

c (x) is convex in ω
and so

Nc ≤
∫

ωPa(x) + (1 − ω)Pb(x)dx

≤ ω

∫
Pa (x)dx + (1 − ω)

∫
Pb (x)dx = 1.

This property naturally leads to a definition of consis-
tency: an update rule is consistent if the probability of finding
that the state is at x is not reduced as a result of the update.
The justification for this interpretation arises from the fact that
the difficulty with fusing estimates which are dependent upon
one another is that it is possible to overestimate the amount of
information available and thus underestimate the uncertainty
in the update. This underestimation is characterised by in-
creasing the mass in certain regions more than it should and,
corresondingly, reducing the mass in other regions more than
it should. Because the mass at each point cannot be reduced
below the smallest value in either Pa (x) or Pb (x), the esti-
mate cannot be underestimated.

The lower bound property naturally leads to a definition of
consistency. However, it does not necessarily lead to a usable

fusion algorithm. For example, taking the weighted average
of the prior distributions,

Pc (x) = ωPa (x) + (1 − ω)Pb (x) , (7)

also yields a consistent estimate. However, the performance
of using estimators using this linear opinion pool are known
to be extremely poor [11] and this leads to the question of
defining a notion of fusion.

3.2. Upper Bound and a Notion of Consistency

As explained above, a fusion operation reduces the mass in
some regions of the state space and increases it in others.
Theory 2 places limits on the lower bound of the distribution.
However, it places no limits on the behaviour of the upper
bound. This, in turn, can be used to define a notion of fusion.
Specifically,

Theory 3. It is possible for an x to exist such that

Pc (x) ≥ max {Pa (x) , Pb (x)} (8)

Proof. Suppose the above inequality holds at some point x�.
Then

P ′
c (x�) ≥ Nc max{Pa (x�) , Pb (x�)}.

Let Pa (x�) be the larger of the two values on the RHS. There-

fore, the inequality holds true if Nc ≤ P ′
c(x�)

Pa(x�) . From the con-
vexity of P ′

c (x�),

P ′
c (x�)

Pa (x�)
≤ ωPa (x�) + (1 − ω)Pb (x�)

Pa (x�)

Since Pa (x�) ≥ Pb (x�) is the larger of the two terms, the
value of the right hand side cannot exceed 1. Since (6) proves
that Nc ≤ 1, (8) can be true.

One case where this condition is guaranteed to hold true is
if the distributions intersect. Let (x)� be an intersection point.
Therefore, Pa (x�) = Pb (x�) = P ′

c (x�) and

Pc (x) =
1

Nc
Pa (x) .

In consequence, the mass can increase in some places
above what was originally there leading to a potential gain
in information.

4. DISCUSSION

This paper has considered the problem of fusing estimates in
a distributed data fusion network. These problems are char-
acterised by the fact that the marginal, but not the joint, dis-
tributions are known. We have examined the properties of
Exponential Mixture Densities in the existing literature. We



hope that these properties may relate to the problem of con-
servative fusion and promote future discussion on a rigorous
definition of ”conservativeness”. Our current interpretation of
EMD fusion is as a bound on probabilities; it yields bounds
on the update “from below” and shows that the estimate can
exceed the prior estimates “from above”. These properties
suggest that the algorithm maintains a level of consistency
and provides information gain at the same time. For Gaussian
data fusion, EMDs are equivalent to the covariance intersec-
tion algorithm, and their conservative fusion properties extend
elegantly to non-Gaussian problems.

In conclusion, we believe that EMDs have the potential
to provide consistent and conservative data fusion of infor-
mation with unknown correlations. We propose that (6) is a
rational working definition of “conservativeness” in this case.
However, a rigorous definition and proof of conservative fu-
sion remains an open problem. Furthermore, the results de-
rived in Section 3 only exploit the convex nature of the EMDs
and not the specific form of the EMDs themselves. We be-
lieve that the Kullback-Leibler divegence-minimising proper-
ties and likelihood invariants play an important role, but the
precise nature of this relationship is currently unclear.
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