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Abstract

This paper describes a localisation framework that combines the accuracy of fea-

ture maps with the scalability of topological maps. The map is structured as a

graph of nodes where each node de�nes a local region feature map. This breaks the

localisation process into a combination of regional feature tracking and node-to-

node context switching. As part of the practical implementation of the localisation

system, we introduce a batch data association method that uses the simultaneous

observation of multiple features to determine data associations in a manner decou-

pled from the vehicle pose estimate. We also present an observation-based dead

reckoning procedure that estimates vehicle motion in place of odometry and does

not require a kinematic vehicle model. Experimental results demonstrate that this

approach is capable of localising in large-scale outdoor environments. We perform

tests in an inner-city park and a suburban street using a scanning range laser as

the sole information source. The diverse nature of these two environments indicates

that these techniques have broad application.

Key words: Outdoor navigation, Autonomous systems, Data association,

Topological feature maps, Odometry-free dead reckoning

1 Introduction

A mobile robot's ability to determine its location within an environment is
a basic competency for autonomous navigation. Genuine autonomy further

dictates that the robot be able to localise from its natural surroundings using
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onboard sensors without requiring any arti�cial modi�cation of the environ-

ment. Some major issues today regarding localisation from natural surround-

ings concern generality (di�erent types of environment), scalability (applica-
tion to large environments) and the ability to enhance and extend a map

of an environment while localising from it [16,21,34]. Therefore, we desire a

paradigm that will operate successfully in any environment of arbitrary size

and uses an extendible map structure.

This paper presents several localisation experiments using a scanning range
laser sensor. A particular characteristic of the laser, the ability to obtain

batches of near simultaneous observations with high precision, is exploited

to implement novel data association and dead reckoning algorithms. These

algorithms are useful in their own right but are used here to demonstrate a

topological feature map structure which enables localisation in large general

environments. The main purpose of this map structure is to facilitate imple-

mentation of large-scale Simultaneous Localisation and Mapping (SLAM) and

particularly to address the revisitation problem for large cyclic environments.

Although the topological feature map is only presented in terms of localisation
in this paper, its application to SLAM is the subject of current research.

The localisation approaches most commonly used today include evidence grids,
feature maps, and topological maps. Each have their particular advantages and

each, to date, have important issues concerning their ability to operate in cer-

tain environments and to scale appropriately to large, dynamic applications.

Evidence grids [12,29] represent a region as a matrix of cells. Each cell

describes a small rectangular area in the environment by a number which
indicates the probability that the area is occupied. A robot's position is main-

tained by accumulating a short-term perception map of the local environment
and periodically registering it with the global map. The short-term map fuses

sensor data into a uniform occupancy representation and is a good means for

�ltering ambiguous sensor data like sonar. The registration process is used to
o�set accumulated pose errors.

Evidence grid maps have the advantage of being able to easily fuse data from

di�erent sensors and to explicitly model both obstacles and free-space. They

present some problems, however, concerning the granularity, scalability and
extensibility of the map. These problems are mainly due to a map's �xed

grid size which de�nes the limit of localisation accuracy and incurs mem-
ory and computation overhead proportional to the number of grid cells. One

method designed to address this issue uses quadtrees or octrees to provide

variable-sized cells [24,8] thus concentrating memory usage to occupied ar-
eas and enabling variable granularity. Nevertheless, evidence grids have not
yet been implemented in large outdoor environments or in places where the

maximum map area cannot be speci�ed a priori.
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Feature maps [20,32] consist of the global locations of a set of features and,

sometimes, their geometric properties. Localisation is then formulated as a

multiple target tracking problem. The robot pose (i.e., 2D position and head-
ing) is usually de�ned in state-space by a state vector [x; y; �]T and covariance

matrix with the pose estimate maintained by a recursive �lter, usually an ex-

tended Kalman �lter (EKF). As the robot moves, its state is predicted using

dead reckoning, typically odometry with a kinematic vehicle model, and the

covariance of the state estimate expands. Periodically, externally sensed in-

formation of the local environment is obtained and features are extracted. If
a sensed feature is uniquely associated to a map feature, the relative location

of the feature to the vehicle can be used to improve the state estimate and

decrease its covariance. The state-space approach is eÆcient and produces

an optimal global pose estimate but tends to be brittle in the presence of

modelling and data association errors.

Modelling error problems are largely related to the implicit assumption of
the EKF that estimate errors have a zero-mean Gaussian distribution. In

reality, however, estimate errors can be due largely to systematic errors in the
state and observation models, non-model dynamics and non-linearities. These
problems may introduce signi�cant biases into the �lter and lead to either

sub-optimal or even inconsistent �lter operation. For example, inaccuracies in
the robot's odometric motion model (e.g., in the wheel-base or wheel radius

estimate) will result in a biased state prediction. Furthermore, an odometric

model using wheel encoders cannot observe wheel slip and this injects another
bias into the state prediction. These errors are usually compensated for by

over-conservative tuning of the EKF so that the covariance estimate is large
enough to encompass both Gaussian and systematic errors. The drawback of

such tuning is sub-optimal �lter performance and an increased likelihood of

data association failure. 1 An alternative to odometry-based dead reckoning
is given in this paper which requires no vehicle model and is largely free of

systematic errors making it ideal for a Kalman �lter prediction phase.

Data association within the Kalman �lter framework is usually performed as

follows. Features are extracted from a set of sensed data. The locations of map
features relative to the current robot pose are predicted and compared with

the sensed features. If a one-to-one mapping exists between the sensed and
map features, the information is used to update the robot pose estimate. If,

however, ambiguous mappings exist, these observations must either be rejected

or applied using a more sophisticated association technique (such as multi-

hypothesis [26]). The gating threshold to validate a particular association is a

1 Recent work using Monte Carlo methods [10] may allay some of these diÆculties.

Monte Carlo �lters represent uncertainty distributions via discrete samples and can

more accurately describe non-Gaussian distributions. They can therefore implicitly

represent multi-modal distributions incurred by ambiguous data-associations.
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function of both the observation and the vehicle pose uncertainties, and the

dependence on vehicle pose uncertainty is the key reason for data association

failure. If the Kalman �lter is tuned too tightly and becomes inconsistent, the
threshold may be too small to allow any matches. This may lead to prolonged

periods of dead reckoning and, with a biased prediction model, may result in

false matches. Alternatively, if the �lter is tuned too conservatively, multiple

feature associations are likely and false matches could occur. A false feature

match often results in the divergence of the localisation algorithm. This paper

presents a more robust alternative data association procedure [5] which uses
the relative spatial coordinates of features to decouple feature matching from

the robot pose estimate.

A �nal issue regarding state-space methods concerns the extension to map-

building while localising. This concept was originally introduced in [31] wherein

every observed feature is added to the state vector. This means the state vec-

tor increases linearly with the number of features and the covariance matrix

increases to the square of the number of features. Thus it becomes necessary

to derive a consistent map-management method to make SLAM scaleable to
arbitrary sized environments. Current attempts to address these problems in-
clude using multiple maps [21] and exploiting the special characteristics of the

matrices involved in SLAM [15], but there still remain problems with very
large environments.

Topological maps are a graph-based description of the environment where
each node is a Distinctive Place (DP) [19], and the connecting edges between

nodes contain procedural information that will enable the vehicle to travel

from one node to the next. A DP is a location in the environment that is dis-
tinguishable from other places on the basis of patterns observable in sensory

data. These patterns are usually model-based representations of common in-
door structures such as doorways and corridor intersections [2] although some

work has been done to identify places by images seen from that location [36].

Edges connecting DPs are typically either the set of behaviours required to
travel between them, such as wall following, or local metric information of the

relative pose of one DP to the other [13,30].

A major advantage of topological maps is that they divide the world up into

a connected set of regions such that the robot is required only to successfully
navigate from one region to the next. Thus, topological maps provide an inher-

ently scalable localisation structure which relies merely on robust transition

between local regions. The primary weakness of topological map representa-
tions has been reliable DP recognition. Most work to date has been in indoor

environments and assumes the presence of common indoor structures but,
even in these areas, recognition can be sensitive to occlusions and viewpoint

variations. Failing to recognise a DP or mistaking the wrong part of the en-

vironment as a DP can result in localisation failure. Another limitation of
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Fig. 1. Topological feature map structure. The map is de�ned as

a graph data structure where each node is a local feature map

and each edge represents the relative pose between two coordinate

frames.

current topological implementations is that the robot can usually only recog-

nise a DP once it has reached the DP location, so that the robot can only
o�set accumulated dead reckoning errors upon arrival, and is unable to track

its pose relative to the DP.

1.1 A Topologically Structured Feature Map

This paper proposes a topologically structured feature map that combines

the optimal tracking capabilities of feature maps with the scalability of a
topological map. The de�nition of this map structure is as follows:

� The map consists of a topological graph of nodes and edges as shown in
Figure 1. Each node de�nes a unique physical location [x; y; �]T in the en-
vironment as the origin of a local coordinate frame [0; 0; 0]T .

� Each node is represented by a set of nearby features. The locations of these
features are stored in terms of the local coordinate system as shown in

Figure 2(a). We de�ne the area surrounding the node containing represen-

tative features as the node region. The extent and shape of the node region
is arbitrary.

� The connecting edges between nodes specify the pose of the coordinate
origin of one node in terms of the local coordinate system of the other (see

Figure 2(b)).

A robot's location is obtained in the coordinate system of the node nearest

and most visible to it. More precisely, in our implementation, it is in the coor-

dinate system of either the nearest node or the second nearest depending on
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(a) Node de�nition (b) Edge de�nition

Fig. 2. Topological feature map de�nition. The nodes (a) are de-

�ned by surrounding features and the graph edges (b) specify ad-

jacent nodes in terms of their relative pose.

which o�ers the greater number of features in the robot's sensory �eld-of-view.
The robot pose is determined relative to the subset of node features that are

observed by its sensors. When a neighbouring node in the map becomes more

visible than the current node (i.e., becomes one of the two closest nodes and
has a greater number of features-in-view) the robot simply switches coordinate

systems.

In the region of a node's feature set a robot can track its pose relative to the

node with bounded growth in its estimate error. If node regions overlap, then

it is possible to maintain tracking continuously but, if the spacing between

nodes is greater than the node regions, there will be periods where the robot
must rely on dead reckoning alone, during which error growth is unbounded.
Entering a node region (and returning to tracking state) after prolonged dead

reckoning requires data association that is capable of coping with substantial
vehicle pose covariance. Some methods for pose decoupled data association

are introduced later in this paper.

As an a priori map, the topological feature map o�ers no real advantage over

ordinary feature maps. However, this structure possesses the ability to be eÆ-

ciently extended making it a feasible map representation for large-scale SLAM

where normal feature maps would become computationally intractable. The

map may be augmented in two ways. First, the state of the features surround-
ing a particular node can be updated using standard SLAM algorithms leading

to a locally optimal map within each node region. Second, the map graph can

be extended with new nodes to provide a set of loosely coupled node regions
which de�ne a large-scale map without loss of consistency. Applying SLAM

to this framework is proposed as a future extension to this work [3].
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1.2 Data Association

Traditional data association methods su�er from their reliance on knowledge of

the vehicle pose estimate. If the quality of the pose estimate deteriorates, these

methods can become quite brittle, particularly in cluttered environments. For

sensors capable of obtaining batch observations, however, it is possible to con-

strain data association in a manner decoupled from the pose estimate. Batch

observations are a set of observations (i.e., viewed features) sensed simultane-
ously or within such a short time-span that motion compensation can o�set

any geometric distortion. These observations enable data association to be

performed on the basis of the relative geometry between feature locations

(e.g., see [25] for a good example).

Additional constraint on data association can be applied using techniques, bor-

rowed from the topological map community, for improving distinctive place

recognition. Topological place recognition methods often attempt to match

sensed data to a database of place de�nitions via the correspondence of data
signatures (e.g., [33,1,36]). The likelihood of a unique matching is determined
by the uniqueness of the signature and this can be increased by, for exam-

ple, using disparate image characteristics such as dominant edge orientation,
edge density, gradients, and texturedness [1]. Similarly, place distinctiveness

can be improved by combining multiple sensing modalities such as sonar and

vision [18]. We have taken these methods on board, at least in principle, by
de�ning our features, not simply in terms of location, but including informa-

tion regarding the feature type (e.g., points, lines, objects) and characteristics

(e.g., size, shape). The current implementation applies this notion in a lim-
ited sense by de�ning two feature types, points and edges, and one feature

characteristic, point radius. Therefore, by increasing the individuality of the
features in a batch observation, we are more likely to obtain a correct set of

data associations.

In this paper we present three data association algorithms. The �rst algorithm

is particularly useful as it generates a maximum combinatorial likelihood of
associations with no prior estimate of the relative pose between the two sets
of data. This allows the relative pose between the data sets to be determined

without tracking. A correct mapping between the data sets is guaranteed

provided the set of features common to both data sets outnumbers the set

of features that generate some coincidental false mapping through geometric

symmetry. The likelihood of false mappings through coincidental symmetry
decreases greatly with the number of associations found [4] but there can be

no direct guarantee that the association set is correct.

Data association with further constraint imposed by tracking the relative pose

between data sets (i.e., having prior relative pose information) is considerably
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more reliable. The two subsequent algorithms in this paper generate a set

of associations given a prior relative pose distribution between the two data

sets. Therefore, of the three algorithms, the �rst (non-tracking) algorithm can
provide an initial guess of the relative pose and one of the tracking algorithms

can con�rm and track this estimate.

1.3 Odometry Free Dead Reckoning

There exist applications, particularly in all-terrain outdoor environments, where

odometry-based dead reckoning is extremely unreliable. While encoder data

may not be particularly noisy, systematic errors (i.e., from faults in the vehicle

model) and bias errors due to slip can be substantial enough to promote �lter
divergence.

Tracking the relative pose of sequential batch observations provides an alter-

native dead reckoning source that, while perhaps more noisy than odometry, is

largely free of systematic error. Sequential tracking does not require a vehicle

model and will operate successfully while ever there are observable features

in the sensor's �eld of view. This paper presents experimental results using
laser which show remarkably low drift rates in two di�erent outdoor environ-

ments over distances of several kilometres. This is shown to be a signi�cant

improvement when compared to the dead reckoning information of standard
encoder-based odometry.

1.4 Format of This Paper

The paper is organised as follows. The next section describes the experimen-

tal equipment used and the environments in which these methods were tested.
Section 3 details feature extraction from raw sensed data. Section 4 describes
the data association algorithms and section 5 presents dead reckoning informa-

tion obtained by mapping sequential laser scans. Section 6 de�nes the manual

construction of the topological feature maps and gives the experimental lo-
calisation results. Section 7 discusses some future directions of this research

and the �nal section makes concluding remarks regarding the experimental

results.

2 Experimental Arrangement

Sensor data from a 2D scanning range laser (SICK PLS) was used for exper-

imental demonstration of the algorithms described in this paper. The laser

8



Fig. 3. Utility vehicle with laser sensor in park environment.

Fig. 4. Suburban street environment.

returns a 180Æ planar sweep of range measurements in 0:5Æ intervals (i.e., 361

range values in anti-clockwise order) with a range resolution of about �5cm.
Data was logged by attaching the laser to the front bumper of a utility vehicle
(see Figure 3) and driving it through an outdoor environment. The vehicle

was equipped with encoders for measuring wheel rotation and steering angle
and a di�erential GPS unit capable of sub-metre accuracy. This information

was not used by our localisation algorithms but provided the ground truth for

map construction and results validation.

This paper describes the results from two outdoor environments. The �rst was

an inner city park shown in Figure 3 with a test run of 3200 metres and the

second a suburban street shown in Figure 4 with a test run of 4350 metres.

The park environment had a large number of trees that provided good point
features although there were portions of open-space where the laser was un-

able to detect features of any kind. During the test run, dynamic obstacles

were present in the form of people walking through the �eld-of-view and cars

9



driving along the major road adjacent to the park. An additional source of

false features and occlusion was due to ground undulation where occasionally

sweeps of ground would dominate a scan.

The street environment involved driving through a suburban area in the pres-

ence of traÆc. This route was characterised by fences, shrubs, sign posts and
parked cars. It was a diÆcult area to extract good quality point features
and there were a lot of noisy features. The terrain was quite hilly and this

also decreased feature stability. Thus the street environment presented a more

challenging test in terms of feature extraction and data association.

3 Feature Extraction

Feature extraction is the process of segmenting raw sensed data and classifying

these portions according to their applicability to a set of representation models.

Using models has several advantages over simply using raw sensor data directly

(e.g., scan matching [22]):

� The information-space for describing the view is reduced for more eÆcient
computation.

� It is possible to select small, discrete, foreground objects that are highly
visible and are unlikely to all be a�ected by occlusion at the same time.

� The sensed data that does not �t a model is rejected. This ensures that, to

some degree, the information used is only that which is likely to be reliable.
For example, the laser sometimes scans arcs of ground due to ground undu-

lations. This may confuse matching algorithms based on raw data but, as
this data does not �t one of our feature models, the feature-based approach

simply rejects it.
� The state of a feature described by a parametric model may be iteratively
improved via Kalman �lter.

One disadvantage, however, is that all useful information which cannot be

classi�ed to a prede�ned model is lost along with the bad. Also, it is possible

that a set of data may be classi�ed by a feature model that does not represent
the raw information well, resulting in an unreliable feature (e.g., a set of data
de�ning a smooth curve will not be well represented if classi�ed as a set

of line segments). Prior to classi�cation, a raw laser scan is segmented into

clusters. This is done by splitting the data at discontinuities in range using
the algorithm given below. In our experiments, the constants for determining

�Rmax were C = 0:07m and P = 0:04.
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�R = abs(Ri � Ri�1)

�Rmax = C + P �minfRi; Ri�1g
if �R < �Rmax

add Ri to cluster

else

Ri starts new cluster

The feature types used in this paper are foreground points and edges as shown
in Figure 5. A cluster is classi�ed as a point if it is in foreground (i.e. has

shorter range than clusters adjacent to it) and is reasonably small (i.e., has

a small distribution of points). Point features are modelled as a circle with

radius

r = D
sin �

1� sin �

Laser data often gives spurious range values at the edges of objects but usually

the angular measurement presents a more reliable information in such circum-

stances. Thus a circle is de�ned by D, the minimum range measurement in the
cluster, and 2�, the subtended angle of the cluster (see Figure 6). A circular
point model is not a good representation for non-circular objects but, given

that the maximum allowable radius was small, it is quite accurate for even
non-ideal object shapes.

A foreground edge is de�ned when any cluster, that has not been classi�ed
as a point, has an edge point that is in front of the edge point of the adja-

cent cluster.The edge model is generally a quite stable feature although it is
unreliable for detecting the edges of smooth curves.

Fig. 5. Feature extraction. Raw laser data is �rst clustered based

on discontinuities between adjacent range measurements and then

classi�ed according to point and edge feature models.
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Fig. 6. Point feature circle model. The parameters of the foreground

point are speci�ed by the subtended angle 2� and the minimum

range measurement D.

The feature extraction procedures shown here are simplistic but demonstrate

the concept of having feature descriptions beyond just point locations. The
distinctiveness of a set of features directly a�ects data association reliability

and can be improved by increasing the diversity and precision of feature types

and their characteristics. Further distinctiveness may be achieved by using

more sophisticated feature models (e.g., Gaussian sum distributions [23]) or
by incorporating multiple sensing modalities (e.g., vision and sonar [18]).

4 Data Association

A large number of data-association schemes exist that can be roughly divided
into three subgroups. First there are those which use the entire data-set as a
feature and attempt to maximise a correlation between two sets of raw data.

This approach is usually implemented based on the impression of similarity
of two data sets (e.g., principal component matching [9] and image signa-

tures [13]) or on the maximum overlap of individual raw data points (e.g.,
scan-matching [22]). The latter of these two implementations is more robust

to view-point changes, occlusion and dynamic objects. When combined with

probabilistic sampling techniques, such as particle �lters [14], to overcome lo-
cal minima, this method could be an attractive alternative to extracted feature

techniques.

The second data-association scheme involves extracting features and match-
ing them piece-wise to map features using a knowledge of the vehicle pose.

This method has been termed the Nearest-Neighbour approach [11] and is
employed in most current SLAM implementations. It su�ers from the fact

that feature association is dependent on the vehicle pose error and can fail

gradually through lack of true associations or suddenly through a false asso-
ciation. A signi�cant issue with SLAM is the re-registration of map features
after completing a large loop and revisiting a previous section of the map. At

the point of revisitation, the pose covariance is large and nearest neighbour
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data association is very unreliable.

The third method requires the extraction of a batch of features simultaneously

from a set of raw data and performs data association based on the combined

association likelihoods between two feature sets. One approach, presented by

Uhlmann [35], combines the individual association probabilities in a Joint As-
signment Matrix and generates a joint association probability by considering

the one-to-one mapping constraint. However, this method does not utilise the

information provided by the relative spatial geometry within each feature set.

Neira and Tard�os [25] present a branch-and-bound algorithm that does ex-
ploit the relative spatial constraints. This method searches for the maximum

set of associations that satis�es a Joint Compatibility measure combining both

individual feature assignment likelihoods and their batch relative spatial prop-

erties. As a tracking data association algorithm, this approach is optimal but

it is not suitable for global localisation (i.e., data association with no a priori

pose information) since it is still dependent on vehicle pose information.

Sometimes it is useful to obtain a most likely set of associations without a
prior vehicle pose estimate. Bailey et al. [4] present a method for performing

batch data association with no prior pose information that uses the relative
geometry between point-feature triplets. A more rigorous method is presented
in [5] which generalises the non-tracking data association concept to arbitrary

feature types using a graph-based algorithm. This graph-theoretic data associ-

ation approach has been used for many years in the areas of 2D and 3D object
recognition [7,17]. However, to our knowledge, this technique has not previ-

ously been applied to target tracking data association or the robot localisation

problem.

A rather di�erent paradigm for performing localisation without prior pose

information is demonstrated by Dellaert et al. [10]. This method is a Monte

Carlo algorithm that samples pose values in the robot domain and weights
them according to an observation-based likelihood function. The algorithm

does not use features but correlates the observation data set (to the map) in
its raw form. It is worth making some remarks concerning the Monte Carlo
global localisation approach compared to graph-theoretic data association.

They both, in a limited sense, permit global localisation but each are restricted

in di�erent ways. The Monte Carlo method does not strictly perform global

localisation but actually describes a location distribution over the domain

covered by samples. The extent of this domain is limited to the area that
can be suÆciently covered by the number of samples available. The graph-

based data association method, on the other hand, is not limited by the size

of the region but by the number of features in a batch. As such it can enable
localisation for much greater domain sizes (particularly if a batch of features

is processed in sub-batches).
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A drawback of explicit feature association, however, is the inability to di-

rectly describe a location distribution. For example, a situation that would

appear as a multi-modal distribution for the Monte Carlo approach would
manifest as multiple alternative sets of data associations for the graph-based

method|where each association set de�nes a di�erent vehicle pose [3]. One

way to counter this ambiguity is to incorporate vehicle pose information using

a tracking data association algorithm (such as Neira and Tard�os [25]). In this

way, each ambiguous location can be tracked until con�rmed or rejected. Two

new tracking association algorithms are presented in this paper. The �rst is an
extension to the graph-based non-tracking method and the second is a Monte

Carlo nearest-neighbour algorithm. These algorithms are useful as exible al-

ternatives to existing tracking batch data association techniques; particularly

for applications where non-stochastic state estimation is used (i.e., where co-

variance and correlation information are not available).

4.1 Non-Tracking Data Association: Maximum Common Subgraph

The main aim of this approach is to decouple data association from the vehicle

pose estimate (see Figure 7). As mentioned previously, this requires that the
sensor used is capable of observing a set of features either simultaneously, or

with suÆciently small temporal displacement that motion compensation can
o�set distortion of the scene. Essentially, the sensor must be able to provide
multiple features with accurate inter-feature geometry.

This algorithm relies on the fact that a set of static features will possess in-

variant inter-feature relationships (e.g., distance between two points or angle
between two lines). It is worth noting that these inter-feature relationships are

arbitrary and need not be spatial. They may be any invariant property that
will apply some constraint between two features. The feature information is

characterised as a graph where the feature types and their various properties

are stored as graph nodes, and the graph edges represent the inter-feature re-
lationships. Thus, data association between two feature sets can be expressed
as the graph-theoretic problem of �nding the Maximum Common Subgraph

(MCS) between two graphs. This results in the maximum subset of features
where all the inter-feature constraints are mutually satis�ed. A complete de-

scription of the MCS algorithm for non-tracking data association is provided

in [5].

4.2 Tracking Data Association

The basic MCS algorithm is typically advantageous for robot pose initialisa-

tion or lost state recovery where there is no prior pose estimate. The data
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Fig. 7. Non-tracking batch data association. Two feature sets (ex-

tracted from two real laser scans) are associated with no prior rela-

tive pose information. Both sets contain a large proportion of false

features (clutter) but the common features are associated success-

fully. The relative pose between the two observer locations is then

obtained as shown.

association set it returns, however, may be a false mapping between feature

subsets with similar geometric properties. This is common in man-made en-
vironments where the layout of objects is often highly structured. Protection
against environmental symmetry failure can be obtained by combining the

inter-feature constraints of MCS with standard vehicle pose constraints.

There are cases where even the combined constraints are not suÆcient to
ensure correct mapping. In these situations, additional strategies such as multi-

hypothesis tracking may be required.

4.2.1 Pose constrained MCS

Given a priori information concerning the location of the vehicle (or the rela-
tive pose between the two feature sets), batch data association can be further

restricted by prohibiting associations between distant feature pairs. Consider
the following example where the map features are exactly known (in global

space) and an observed feature is also exactly known (relative to the vehicle).

The location of the vehicle in the global coordinate system is known to exist
within a bounded uncertainty region (see Figure 8). That is, the nominal vehi-

cle location [xv; yv; �v]
T is given and the true location is within [�a;�b;�c]T

of this location. On the basis of this information, if the nominal location of
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Fig. 8. Conservative bounding box. Given a bounded pose uncer-

tainty, the uncertainty of a feature location is depicted by the

shaded area. This region is bounded by a rectangular box with

the dimensions shown.

the observed feature in global coordinates is (x; y), the true location of the

observed feature may be anywhere in the region bounded by the shaded area.

A conservative bounding box that encompasses the observed feature uncer-
tainty region may be calculated from the following parameters.

d =
q
x2 + y2

W1 =
p
a2 + b2

W2 =W1 + d(1� cos c)

L =W1 + d tan c

Therefore, only map features that fall within this box region are considered as
possible associations to the observed feature. These pose-based constraints can
be incorporated into the MCS algorithm to reinforce the constraints imposed

by the inter-feature relationships. In context of the maximum clique imple-

mentation of the MCS algorithm [5], these additional constraints restrict the

generation of nodes in the correspondence graph (i.e., the graph representing
possible associations between the two feature sets).

The above example describes pose constrained MCS for a situation where only

bounded uncertainty information is available. This approach may be useful if

the estimation process being used does not o�er more explicit information

concerning the vehicle state. An expanded version of the graph-theoretic data

association technique can be found in [3] which integrates the pose constrained

MCS algorithm completely with the EKF estimation process|thus enabling
the use of correlation information between vehicle and feature states to obtain

an optimal association set.
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4.2.2 Monte Carlo tracking

A simple alternative tracking algorithm involves selecting a random sample

of poses from the predicted pose distribution and, for each sample, perform-

ing nearest-neighbour data association between the two feature sets. The best

data association set is found simply from the sample with the largest number

of valid nearest neighbour data associations. For a closely tracked vehicle with

small pose uncertainty, this method can be implemented with low computa-

tional cost and works reliably when the number of sampled poses suÆciently

covers the distribution space.

This Monte Carlo approach should not be confused with the Monte Carlo

localisation algorithm of Dellaert et al. [10]. This method is a search for a

maximum set of feature associations only and does not produce a sample-based

pose distribution approximation. The maximum set of associations found is

sent to a separate estimation process which calculates the pose estimate. In

fact, rather than performing Monte Carlo pose sampling, the same result could

be obtained by taking a few pose samples within the region and implementing

a hill-climbing search that maximises the number of valid associations.

5 Dead Reckoning

Odometry has long been the mainstay of mobile robot dead reckoning but
there are situations where odometric information can be very unreliable. This

is particularly the case with non-holonomic vehicles in all-terrain outdoor en-
vironments.

The �rst concern arises with a vehicle's kinematic motion model since errors

in the kinematic model result in systematic biases in the odometric motion

estimate. A typical Ackerman steered vehicle requires accurately calibrated
wheel alignment and steering angle, and a precise estimate of the wheel radius

and wheel-base. Wheel radius is particularly diÆcult to estimate as it can

change over time with wear or load changes.

The second problem is the non-kinematic dynamics of the vehicle motion due

to slip. The amount of slip is dependent on the speed and steering angle of
the vehicle and is particularly an issue with outdoor vehicles where di�erent

surfaces will produce varying degrees of slip. Also, some kinematic systems are
more prone to slip than others. For example, articulated skid-steered vehicles,

such as a mining LHD vehicle [27], have very large amounts of slip induced

when turning.
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5.1 Sensor-based Dead Reckoning

An alternative to odometric dead reckoning is sensor based dead reckoning

where observations are compared sequentially to obtain a relative motion es-

timate. This has the advantage of being free from vehicle models so that

estimates do not su�er from model dependent errors. A second advantage is

that the dead reckoning system becomes a self-contained module and can be

transferred from one vehicle to another without change. Some disadvantages of

sensor based dead reckoning are its reliance on regions with observable static
features and the possibility of tracking failures through bad data associations

or tracking moving objects. Tracking failure through lack of features is easily

detectable but often incorrect data associations and mistaking slow moving

objects for static ones are not. They can fail subtly and give motion estimates

that are reasonable and consistent but wrong.

Clearly a desirable compromise would be the redundant use of odometry and

sensor based dead reckoning so that a fused estimate could be obtained during
normal operation and discrepancies could signal fault situations. Determining
the source of fault (i.e., tracking failure or slip) is a more diÆcult issue and out-

side the scope of this paper. Frequency domain fault detection [28] prescribes
the need for a third sensor (e.g., inertial platform) to statistically determine

the fault source.

A common example of sensor-based dead reckoning is optical ow which es-

timates motion without the requirement of a vehicle model and so is easily
installed as self-contained retro�t module. Optical ow [6] computes an esti-

mate of 3D motion by generating a vector �eld of image intensity ow between

sequential image frames. Its main weaknesses are its high computational cost
(often requiring specialised hardware) and its unreliability in general environ-

ments. Several assumptions must be (approximately) met for reliable quanti-

tative results. These include locally uniform illumination, Lambertian surface

reectance, and pure translation parallel to the image plane. It is also neces-
sary to have a high frame rate relative to the rate of motion to aid correlation

between sequential frames.

The optical ow approach is a high frequency motion estimator needing high

bandwidth data for correct operation. The laser-based dead reckoning method
proposed here, however, is relatively low frequency and does not require small

motions between scans to ensure proper feature correspondence and so forth.

The basic requisite of the algorithm is a connectedness between scans where,
given two scans, there exist features common to both scans. By integrating
the change in pose of the feature sets over sequential scans, a motion estimate

is obtained.
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5.2 Laser-based Dead Reckoning

Consider two sequential laser scans where the feature associations between the

two sets have been correctly determined using batch data association. Laser-

based dead reckoning involves using these associations to �nd the relative pose

between the two scans and hence the change-in-pose estimate of the vehicle.

One simple method for calculating the relative pose between the two sets of

point-location features is given in Appendix C of [22]. However, this method

does not consider the covariance of each feature and does not produce an

estimate of the relative pose covariance.

A technique for computing the relative pose and its covariance is to im-

plement a form of piece-wise SLAM such that, for each sequential pair of

laser scans, the following steps are taken. First, an augmented SLAM vector
x̂a = [x̂v; x̂m]

T is initialised where x̂v = [x̂v; ŷv; �̂v]
T is the vehicle pose estimate

and x̂m = [x̂1; ŷ1; : : : ; x̂n; ŷn]
T are the point features from the �rst scan. The

location of the vehicle relative to the �rst scan set is de�ned as x̂v = [0; 0; 0]T

with covariance Pvv = 0. The features in x̂m are not correlated to each other

so the feature location covariance Pmm is block-diagonal (i.e., the only cross-
correlations are between x-y values of each feature). Also, the feature estimates
are not correlated to the vehicle pose so that the SLAM covariance is

Paa =

2
64
Pvv 0

0 Pmm

3
75

The next step is to propagate the vehicle location to approximately the relative
pose of the second scan. This value may be obtained using the method of Lu
and Milios [22]. This estimate, though, is assumed to be completely uncertain

and the diagonals of Pvv are set to practically in�nity (108, say). (Note that
the approximate pose estimate is only required to minimise linearisation errors

in the EKF update.)

Finally, each feature in the second data set is observed using standard SLAM

update equations [16]. The resulting SLAM estimate x̂a includes the estimate

of the vehicle pose x̂v and its covariance which can be extracted directly from
the augmented SLAM vector. It is important to note here that the change-in-

pose estimate is correlated to the scan information (i.e., the cross-correlations
Pvm 6= 0) and, as each scan is used twice for sequential scan dead reckoning,

the change-in-pose estimates x̂v are pair-wise correlated. If dead reckoning

estimates are accumulated over several scans, the change-in-pose covariance
must be adjusted to avoid over-optimistic uncertainty accumulation. This may
be dealt with conservatively by simply expanding each change-in-pose covari-

ance Pvv by a factor of two (ensuring against the worst case where exactly
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the same information is used twice). Therefore, the change-in-pose estimate is

given by x̂Æ = x̂v and PÆ = 2Pvv.

The piece-wise SLAM algorithm described above is applied separately for each

sequential pair of laser scans to obtain each change-in-pose estimate x̂Æ. How-

ever, in some circumstances it may be desirable to combine a sequence of

change-in-pose vectors to determine an accumulated dead reckoning estimate.

This vector addition requires propagation of the covariance estimate. That

is, the addition of a new change-in-pose x̂Æ to the previous (dead reckoning)

pose estimate x̂k is given by the following prediction equation (as shown in
Figure 9).

2
666664

x̂k+1

ŷk+1

�̂k+1

3
777775
= f (x̂k; x̂Æ) =

2
666664

x̂k + x̂Æ cos �̂k � ŷÆ sin �̂k

ŷk + x̂Æ sin �̂k + ŷÆ cos �̂k

�̂k + �̂Æ

3
777775

and the covariance Pk+1 is therefore given by

Pk+1 = rf
xk
PkrfTxk +rf

xÆ
PÆrfTxÆ

where the Jacobians rf
xk

and rf
xÆ

are as follows.

rfxk = @f

@xk

���
(x̂k; x̂Æ)

=

2
666664

1 0 �x̂Æ sin �̂k � ŷÆ cos �̂k

0 1 x̂Æ cos �̂k � ŷÆ sin �̂k

0 0 1

3
777775

rfxÆ = @f

@xÆ

���
(x̂k; x̂Æ)

=

2
666664

cos �̂k � sin �̂k 0

sin �̂k cos �̂k 0

0 0 1

3
777775

Besides the need to expand each change-in-pose uncertainty Pvv by two, the

dead reckoning estimate uncertainty tends to be much greater than would
be expected from the sensor accuracy alone. This is because the uncertainty

for each feature measurement must be magni�ed to incorporate various un-

modelled factors in the real environment. One unmodelled component is the

non-ideal shape of the physical objects in the world that do not exactly �t the
point or edge feature models. For example, trees in the area are not perfect

vertical cylinders but have variable non-circular trunk cross-sections. Another

non-ideal factor in outdoor environments is the rough 3D ground surface which

is modelled in these experiments as at 2D terrain. The projection onto a 2D

plane distorts the sensor measurements and it is necessary to expand the mea-

surement uncertainty to cater for a presumed worst-case level of distortion.
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Fig. 9. Addition of change-in-pose vectors xÆ to obtain an accumu-

lated dead reckoning estimate.
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Fig. 10. Encoder dead reckoning. Unmodelled properties of the ve-

hicle motion, such as wheel slip and non-linear parameters, con-

tribute to rapid deterioration in the odometric pose estimate.

A comparison of odometry and laser-based dead reckoning is now presented.

This data set was logged in the park environment given in Figure 3. Figure 10
shows the estimated vehicle trajectory derived from wheel and steering encoder

odometry. The considerable pose error, when compared with the SLAM [16]

ground truth given in Figure 11, is mostly due to non-linearities and wheel
slip at high steer angles. The laser-based dead reckoning results are shown
in Figure 12. It can be clearly seen that this method is una�ected by these

factors and displays remarkable accuracy over a signi�cant period of time.

21



−100 −80 −60 −40 −20 0 20 40
−30

−20

−10

0

10

20

30

40

50

Fig. 11. SLAM-based ground truth.
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Fig. 12. Laser dead reckoning. The matching of sequential laser

scans produces a pose estimate that drifts considerably more slowly

than odometry and does not require a vehicle model.

5.3 Persistent Feature Filter

Sequential laser scan matching serves a second purpose in �ltering out tempo-

rary and dynamic features while tracking static features. Within a single scan

there are generally numerous false, noisy, or non-static features which, among
other things, may be due to inconsistent clustering of the data set, undula-

tion of the ground, or people and other objects moving through the scene. A

simple form of persistent feature �lter was implemented for these experiments
where those features common to both the current scan and its predecessor are

kept and the rest rejected, thus removing a substantial source of unreliable
information (often between 50% and 90% of features in a scan).

A more sophisticated version of the persistent feature �lter may incorporate
a record of the number of scans over which a feature has been tracked and

the distance the sensor has moved during this time. This would indicate the
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reliability and visibility of a feature. In particularly dynamic environments, it

may also be desirable to track static features that are temporarily occluded or

missed for a few scans. This would involve propagating a placeholder feature
relative to the sensor motion and checking whether it reappears within a short

distance.

6 Localisation Via Topological Feature Maps

Localisation was tested using experimental data from the two environments

described previously. The topological feature maps were constructed manu-
ally from logged laser data and a global \ground truth" of the vehicle pose.

The ground truth for the park environment was generated from the laser and

encoder information using an optimal SLAM algorithm [16], while the ground

truth for the suburban street area was provided by a di�erential GPS unit.

Neither of these alternative location measures gave an ideal true path but
they were suÆcient to indicate the reliability of the localisation method and

demonstrate the bounded nature of its error growth.

6.1 Implementation Details

Given that each experimental data set consisted of a timestamped laser scan
set and a timestamped true path, the topological feature maps were generated
manually as follows:

� Node locations were selected at points on the ground truth path to cover

the area in question with an approximately even distribution. The street
environment nodes were selected to be approximately equi-spaced over the

region travelled (e.g., every 50m).
� The laser data time-stamp nearest to each node location time-stamp was
found. Linear interpolation was used to align the node location with the

laser scan location.

� For each node, the features extracted from the appropriate laser scan were

stored as the node de�nition. This meant that each node was de�ned by
features as seen within a 180Æ �eld-of-view in the direction of the positive

x-axis.

� Nearby nodes were connected and their relative poses stored.

The vehicle pose within the map was initialised by a rough guess limited, in this
implementation, by a search of only the nearest node. That is, a non-tracking

batch data association was performed on the node known to be nearest the

vehicle true location to initialise the pose estimate.

23



Tracking was performed such that the pose estimate of the vehicle relative to

the current node was determined entirely by the latest laser scan|ignoring

all prior pose information. In fact, prior pose information was merely used
to indicate the current node context and to detect false mappings (via their

over-large change-in-pose value). In these experiments, no incorrect mappings

occurred even though only non-tracking batch data association was used to

register observed data to the map nodes. The particular implementation of

the tracking scheme was as follows:

� The vehicle motion (dead reckoning) estimate was obtained using the Monte

Carlo tracking data association method on sequential scans and accumulat-

ing the change-in-pose estimates.

� An estimate (tagged as reliable) was maintained of the vehicle pose and

covariance relative to the \most visible" node. This estimate had two modes,

tracking and prediction.

� If the reliable estimate was in tracking mode and the number of features

associated between the current observation set and the node feature set was

greater than a threshold, then the pose estimate was updated directly with
this observation information. If, on the other hand, insuÆcient associations
were made, the estimate would switch to prediction mode.

� While in prediction mode, the reliable estimate was based on accumulated
dead reckoning information only and so su�ered growing uncertainty. Since

prediction mode essentially stated that the reliable estimate had lost track
of the current node, a separate estimate (tagged tentative) was attempted
by performing a non-tracking batch data association to the predicted most

visible node. If the mapping was successful (i.e., had suÆcient number of
associations) then the tentative track was maintained over a number of

scans for several metres. If this track remained consistent over the speci�ed

period, the reliable estimate switched to this result and reverted to tracking
mode.

� After each new scan, and subsequent motion estimate, the pose of the vehicle
relative to the nodes adjacent to the current node was calculated along with
the visibility of the features of these nodes. If an adjacent node had more

features in the vehicle's �eld-of-view than the current node, a context switch
occurred from the current node to the more visible one.

6.2 Localisation Results

6.2.1 Park trial

The SLAM ground truth of the vehicle path for the park test is shown in
Figure 13 with its corresponding manually constructed map. This trial lasted

for 16 minutes with the vehicle travelling about 3.2 km. Over this period, the
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(b) Topological feature map

Fig. 13. Park environment trial run. Seven nodes were selected from

the SLAM true path data set and each node was de�ned by the

single corresponding laser scan taken at its location.
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Fig. 14. Estimated error in the park environment.

localisation algorithm was in tracking mode 60% of the time. Of the remaining

40%, 27% was purely dead reckoning and 13% was relying on dead reckoning

but with a tentative �x on the current map node. Figure 14 shows the distance

error in the pose estimate compared with the ground truth estimate. The

estimate error is generally less than one metre and, in fact, this error is mostly

due to ground truth error and map alignment problems as discussed below.

The important points to note with these results is the bounded error while
tracking (tracking scans indicated by dots) and the recovery of tracking after

periods of dead reckoning (e.g., around the time t = 1100 sec).
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(b) Topological feature map

Fig. 15. Suburban street environment trial run. The nodes were

placed at approximately equal spacing along the trial loop. Each

node was de�ned by the single laser scan associated with the chosen

DGPS true path location.

6.2.2 Suburban street trial

GPS ground truth of the street test run is shown in Figure 15 with a cor-
responding topological feature map. The trial run involved two loops of a

suburban residential block taking 15 minutes to travel about 4.3 km. The
results of the second loop are not shown here as the di�erential GPS (used
for ground truth) gave unreliable readings during this loop. Nevertheless, the

path tracked during this second loop was suÆciently similar to the �rst to
presume that localisation was performed successfully.

Several maps were constructed for this route in order to test the behaviour of

the algorithm with di�erent node spacings. Spacings of 10m, 50m, 90m and
150m were tested and their results are shown in Figure 16. The black stars on
the plots indicate scans where a tracking mode estimate is obtained. For each

map, the vehicle travelled in tracking mode for 60%, 25%, 20%, and 12% of the
time respectively and relied on dead reckoning for 30%, 68%, 75%, and 85% of

the time. The di�erential GPS provided a more reliable ground truth (usually

� 10� 20cm) than was available for the park trial but, with the problem of
map node alignment, the determination of error source remained somewhat

ambiguous.

During tracking mode, the distance error was usually less than 0.5m and, when
this was not the case, it is probable that the error was in the map alignment

(see below) and not in the tracking algorithm. The accumulated error due to
prolonged dead reckoning was proportional to the spacing of the map nodes

as would be expected and, particularly apparent in the map with 150m node

spacing, the localisation algorithm was able to regain track when the pose

26



600 650 700 750 800
0

0.5

1

1.5

2

time (s)

di
st

an
ce

 e
rr

or
 (

m
)

(a) Node spacing 10m
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(b) Node spacing 50m
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(c) Node spacing 90m
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(d) Node spacing 150m

Fig. 16. Estimated error in the street environment.

estimate error was substantial.

6.3 Results Analysis

As can be seen from the experimental results, this localisation method presents

very consistent behaviour in di�erent types of environment. Nevertherless, it

is important to determine the sources of localisation errors and discuss the

implications of these errors on the results.

When localising relative to a particular node, the only sources of vehicle pose

errors are in the observation (scan) data and the feature set de�ning the node

itself. These errors are quite small|simply the sensor accuracy and some
non-modelled quantities such as non-ideal feature shape and terrain slope.
However, to relate the relative pose estimate back to the ground truth, the

relative pose must be transformed to the global coordinate system (i.e., the
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relative pose is converted to a global pose given the known global pose of the

node). This transformation introduces a substantial error source in terms of

node alignment.

The estimated error results depicted in this paper were found by obtaining the

vehicle pose estimate relative to a map node and transforming this estimate

by the global node pose. The resulting global vehicle pose was then compared

with the global pose of the \true path" at the same timestamp. The estimated

error shown in the graphs is simply the distance between the two global pose
estimates.

Thus, there are essentially three sources of error in the vehicle pose error es-

timate. The �rst is the fairly small error in the actual relative pose estimate.

The second is the error in the true path global estimate at the given times-

tamp. The third, and perhaps most signi�cant, is the error in the global pose

estimate of the node. This last error source is important largely in terms of

the node's angular alignment because the e�ect of misalignment increases with

the distance of the vehicle from the node origin. Even a small angular mis-
alignment can cause the estimated global error to appear large if the vehicle
is 50 metres from the node.

In the park environment the true path error was often in the order of one

metre and so presented the main error source. On the other hand, in the

street environment, the DGPS ground truth was very accurate but correctly
aligning the nodes was diÆcult and, particularly for the wider node spacings,

created the main pose error. In both situations, these errors tended to hide

the actual localisation error which was the vehicle pose estimate relative to
the map node.

Another minor inuence on the rather pessimistic error estimate results was

because the nodes were chosen at arbitrary locations where good feature infor-

mation may not have been available. A measure of the information contained
in each scan feature set may have enabled the selection of better quality node

candidates.

Finally, despite node misalignment, the suburban street tests demonstrate that

the node spacing directly a�ects the localisation accuracy. If the node spacings

are larger than the node regions, such that the feature sets do not overlap,

there will be regions where the vehicle must navigate using dead reckoning

only. Conversely, if the node regions do overlap, the vehicle will be able to
maintain track of its pose with, perhaps, intermittent periods of dead reck-

oning due to occlusion or dynamic objects. This issue is important because,

although the non-tracking batch feature mapping method increases data asso-
ciation robustness, it cannot guarantee correctness. Constraining association

with pose information is required in most environments to prevent divergence
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and, therefore, it becomes necessary for the vehicle pose uncertainty to be

minimal (i.e., to maintain tracking mode as much as possible). Further con-

�dence checks for correct data association may be required in environments
with a lot of symmetry in which case a multi-hypothesis implementation may

be needed.

7 Future Research

One of the most challenging problems of the current implementation is the

feature extraction process. By only selecting point and edge features (or other

simple geometric primitives such as lines or corner points) a large portion of

the available information is discarded. This makes tracking in unstructured
environments like the suburban street more diÆcult than it should be and

reduces data association reliability by ignoring distinguishing features within

a scan. The primary diÆculty with improving feature extraction is de�ning
general parametric feature representations that can be augmented with sub-
sequent information.

Extending the current implementation to incorporate simultaneous map build-
ing is presently being investigated [3]. This involves spawning new nodes and

augmenting the feature sets representing old nodes. Updating feature informa-

tion within a node region could be performed using standard SLAM algorithms
while the relative pose between nodes need only be loosely coupled. If the node

regions were made to overlap, the result would approach the accuracy of opti-

mal SLAM. Perhaps the most diÆcult problem with extending this framework
into SLAM is the detection of cycles where one section of the map rejoins an

old section (i.e., a graph self-intersection). Detecting cycles in a reliable and
scalable manner will be the main issue in this research.

8 Conclusion

The topological feature map described in this paper was capable of reliably

localising a vehicle in the two environments tested. These environments were

large outdoor regions and suÆciently diverse to suggest that the method could

have broad application.

The speci�c implementation presented here used a 2D scanning laser as the

sole information source (although other sources were used to validate the re-

sults). Batch feature data association was used to track the vehicle's pose in
the map and also to provide a dead reckoning estimate while ever tracking

was lost. The dead reckoning result was reliable and accurate in situations
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where odometry su�ered from slip and other non-linearities. It is likely that

laser-based dead reckoning and odometry could be used in a complementary

fashion where the laser detects slip and odometry operates during tracking
failure (from lack of features etc). Using the laser information for dead reck-

oning and tracking meant that a pose estimate could be maintained without

a vehicle model. This implies simple modular installation and freedom from

problems concerned with kinematic modelling errors and vehicle dynamics.

The two experimental trials did not use vehicle pose information to constrain
data associations but still operated successfully. It is likely that environments

would exist where pose constraint information would become necessary due to
environmental symmetries but these results indicate the inherent robustness

of the non-tracking batch data association approach. It was also shown that

the vehicle was able to relocalise after long periods of dead reckoning and with

signi�cant pose estimate error. Similarly, localisation was not sensitive to the

initial conditions.
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