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Scan-SLAM: Recursive Mapping and Localisation
with Arbitrary-Shaped Landmarks

Tim Bailey and Juan Nieto

Abstract— Scan-SLAM is a simultaneous localisation
and mapping algorithm that combines scan-matching
methods with recursive estimation of landmark locations
(using an EKF or other Bayesian filter). The scan-matching
capability allows landmarks with arbitrary shapes to be
modelled directly by sensed data and tracked within a
conventional filter framework. This paper presents the es-
sential Scan-SLAM algorithm, and implementation details
for application with a scanning range-laser: segmentation,
alignment, covariance estimation, data association, and
landmark model augmentation.

I. INTRODUCTION

The earliest probabilistic versions of simultaneous
localisation and mapping (SLAM) were built upon the
extended Kalman filter (EKF) and tracked simple geo-
metric features such as points or lines [28, 9]. Tradition-
ally, landmarks conforming to these geometric models
were referred to as “point targets”, (a term borrowed
from the target-tracking literature), and a prevalent no-
tion arose that the EKF formulation was only suited
to environments with structure representable by these
models. Furthermore, EKF-SLAM was seen as wasteful
in discarding any data that did not correspond to an
available model.

The Scan-SLAM algorithm [24, 25] was introduced
as a response to this notion. We argue that the term
“point target” is a misnomer in this context insofar
as it does not refer to the shape or geometry of the
landmark. Rather it should be understood as referring
to the point location of the stationary landmark. Thus,
EKF-SLAM is applicable to arbitrary shape models, and
the estimation of landmark pose is separate from the
definition of landmark shape. In particular, these models
are not confined to geometric shapes like circles or
lines, and Scan-SLAM proposes the generation of shape
models directly from the sensed data. (It is worth noting
that, while Scan-SLAM is presented here using the EKF,
it is equally suited to other estimation algorithms, such
as the information filter or particle filters. The key point
is that landmark pose estimation and shape modelling
are treated separately.)

SLAM based on scan matching is not new, with
early work on the alignment of range-laser scans for
map building now more than ten years old [19, 20].
The consistent pose estimation (CPE) algorithm [14,
17] builds directly on this work. More recently, scan-
matching SLAM has been implemented using particle fil-
ters [16, 11, 13] and sparse information-form estimation
[12, 8]. These methods have all successfully built large-
scale maps in a variety of challenging environments.
What these approaches have in common is that they
all estimate the entire vehicle trajectory, rather than just
its latest momentary pose, and they maintain a history
of raw data scans. Essentially, their estimation process
is trajectory-centric rather than landmark-centric as in
traditional EKF-SLAM.

Scan-SLAM presents a landmark-centric version of
scan-matching SLAM. Is it better than existing scan-
matching methods? The short answer is no. This ap-
proach may be seen as alternative to, rather than su-
perior to, trajectory-oriented SLAM. Each has tradeoffs
in terms of implementation complexity, computational
efficiency, and mapping accuracy and reliability. How-
ever, both paradigms have much in common. All scan-
matching methods involve scan segmentation, registra-
tion, estimation of alignment uncertainty, and alignment
validation. These common issues will be the focus of
this paper.

The scope of this paper is to address issues related
to SLAM in the small to medium scale. Large scale
implementations rely on additional mechanisms to miti-
gate computational cost and nonlinearities [1, 4], and to
facilitate the closing of large loops [1, 22, 23, 5]. These
mechanisms are directly applicable to scan-matching
SLAM, but are not examined here. Another topic beyond
the scope of this paper is the important issue of map
management. Any industrial-strength SLAM implemen-
tation will track tentative landmarks for a period before
fusing them into the map, and remove existing landmarks
that have become unreliable or disappear. These, and
other map housekeeping issues, are not discussed further.

The following section presents the essential form
of the Scan-SLAM algorithm. Section III discusses
the properties of several alternatives for representing
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shape models. Section IV discusses segmentation of
laser scans. Section V addresses scan alignment and
Section VI presents algorithms for estimating alignment
covariance. The next section examines data association
in regard to searching for candidate landmarks and val-
idating alignment. Section VIII discusses the evolution
of landmark shape models with successive observations,
and the final section sums up with some concluding
remarks.

II. ESSENCE OF SCAN-SLAM

The essential Scan-SLAM algorithm differs from tra-
ditional feature-based EKF-SLAM only in the way it
generates its observation model. An EKF requires an
observation model of the general form

z = h (x) + r, (1)

where the measurement z is a function of the state x,
and r is zero-mean measurement noise with covariance
R. A typical conventional observation model for laser
data is a range-bearing model,

z =
[ √

(xL − xv)2 + (yL − yv)2

arctan yL−yv

xL−xv
− φv

]
+ r. (2)

However, when observing a landmark, a scanning laser
never directly returns range-bearing of the landmark
location. Rather it returns a series of measurements
of the landmark surface, and this is converted to a
location estimate using a shape model. For example,
suppose the object were a tree trunk, then one would
segment out the relevant laser measurements, fit a circle
to these points, defining the landmark location as the
circle centre, and estimate the observation uncertainty
from the raw measurement uncertainties and the circle
model. This then forms the observation according to (2).
For more details on this example, see [1, Section 3.4.1].

Scan-SLAM does basically the same thing, but with-
out the predefined geometric model of a circle (or line
or point, etc.). Instead, the shape model is composed
of raw sensor measurements, and the observation model
is obtained by aligning this model with subsequent
laser scans. Having generated an observation of the
form {z,R}, the remaining algorithm—vehicle pose
prediction, observation fusion, adding new landmarks—
is identical to conventional SLAM.

The essential Scan-SLAM framework, therefore, is
as follows. The SLAM state x = [xv,x1, . . . ,xN ]T

consists of the vehicle pose xv and the global pose of
landmark coordinate frames xi as shown in Fig. 1(a).
Each landmark estimate is a local coordinate frame, and
the landmark’s shape model is defined in these local

coordinates as in Fig. 1(b). The shape information is
separate from and auxiliary to the SLAM estimation
process. On obtaining a new scan, the predicted location
of the landmark relative to the vehicle is obtained by
projecting the global landmark frame estimate into the
vehicle coordinate frame, as in Fig. 1(c), and, in turn,
projecting the shape model into the vehicle coordinate
frame. This gives an initial prediction for scan-matching,
aligning the shape model with the scan and computing
the alignment covariance, as shown in Fig. 1(d).

It is important to realise that alignment is observation
generation, analogous to the alignment with a circle
model mentioned above. It is not a filter operation;
not a prediction step followed by an update step. The
prediction of the landmark frame in vehicle coordinates
is merely a seed for the alignment process, typically
necessary to achieve a basin of convergence and avoid
local minima.

The form of the observation model generated by scan
alignment is the pose of the landmark frame as seen from
the coordinate frame of the vehicle,

z = xv
L

= F(xG
L − xG

v ) + r,
(3)

where the superscript denotes the base coordinate frame,
G for global coordinates and v for vehicle coordinates,
and the rotation matrix is given by1

F =




cosφG
v sinφG

v 0
− sinφG

v cosφG
v 0

0 0 1


 .

III. MODEL REPRESENTATION

The landmark shape model is represented in a format
suited to scan-matching. Three such representations are
Gaussian mixture models (GMMs), occupancy grids, and
raw points. The first two perform alignment by cross-
correlation, the latter by a process called iterative closest
points (ICP) [3].

GMMs are weighted sums of Gaussian functions,
and are applied to modelling laser scans in [1, Section
4.4]. This representation permits very accurate scan
alignment, more accurate than ICP since it does not in-
volve point-to-point correspondence assumptions. How-
ever, a straightforward implementation of GMM cross-
correlation is expensive and, while efficient forms are
possible (see [1, Section 4.4.4]), a quick and nearly-as-
accurate solution based on ICP is simpler.

Occupancy (or evidence) grids convert a range-image
into a probabilistic estimate of occupied space, where

1Rotation matrices are usually denoted R but we are already using
this variable to denote observation uncertainty.
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(a) SLAM state

(b) Model for x3 (c) Predicted pose (d) Aligned pose

Fig. 1. The essential Scan-SLAM algorithm. The SLAM state (a) is composed of the vehicle pose and the global pose of landmark
coordinate frames. For each landmark frame, there is an auxiliary shape model (b), which is maintained in the local coordinate system of
the landmark frame. This embedded frame defines the “point location” of the landmark. When the vehicle obtains a new scan, (of landmark
x3 in this example), alignment is commenced from the predicted location x̂v

3 in vehicle coordinates (c) and, after alignment, the resultant
relative pose and estimated uncertainty forms the new observation (d).

the continuous space is approximated by regular discrete
cells [10, 15, 27, 18]. Grids offer a superior represen-
tation, at least in principle, because they permit explicit
representation of occupied space (about the endpoint of a
range measurement), free-space (along the measurement
ray) and unknown space (unobserved regions). This
has the potential to provide more informative cross-
correlation than the GMM method above or ICP, which
only model occupied space. However, grids are also
expensive, and there is a tradeoff between correlation
accuracy and grid-cell size. They are particularly expen-
sive for 3-D range images. Nevertheless, 2-D grids are
popular for scan-matching SLAM [14, 16, 11, 13], and
several efficient implementations are available as open-
source at http://openslam.org.

Models composed of unprocessed range-image data-
points may be aligned using ICP [3, 20]. The basic
ICP algorithm is very simple. Let a scan of reference

points be denoted pr = {pr
1, . . . ,p

r
N} in coordinate

frame r and a second scan of points be denoted qs =
{qs

1, . . . ,q
s
M} in coordinate frame s. Given an initial

estimate x̂r
s = [x̂r

s, ŷ
r
s , φ̂

r
s]

T of the pose of frame s with
respect to frame r, the following three operations are
performed iteratively: (i) transform the points qs into
the frame of r,

q̂r
i =

[
x̂r

s

ŷr
s

]
+

[
cos φ̂r

s − sin φ̂r
s

sin φ̂r
s cos φ̂r

s

]
qs

i , (4)

(ii) for each q̂r
i ∈ q̂r, find its nearest neighbour pr

j ∈ pr,
and (iii) compute a new estimate of x̂r

s so as to minimise
an error function f

(
{pr

j ,q
s
i}M

i=1, x̂
r
s

)
. These three oper-

ations may be summarised by a short MATLAB function,
wherein each set of points is stored as a matrix of col-
umn vectors. (Note, for least squares, the error function
minimisation is implicit in the transform_points
function.)
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function x = icp(p,q,x,N)
for i = 1:N
qr = transform_frame(q,x);
j = nearest_neighbours(p,qr);
x = transform_points(p(:,j),q);

end

Typically the nearest neighbour search is based on
Euclidean distance between points, and the subsequent
alignment transformation is an unweighted least-squares
operation. This form carries the implicit assumption that
the point location uncertainties are equal and isotropic,
which is generally not the case, but this choice of
error function has the distinct advantage of a cheap
closed-form (non-iterative) solution [20, Appendix C].
A MATLAB implementation of the alignment algorithm
is as follows.

function x = transform_points(p,q)
P = cov([q;p]’,1);
S = P(1:2,3:4);
phi = atan2(S(1,2)-S(2,1), ...

S(1,1)+S(2,2));
R = [cos(phi) -sin(phi);

sin(phi) cos(phi)];
xy = mean(p,2) - R*mean(q,2);
x = [xy; phi];

There are two significant problems with the simple
ICP algorithm. First, the point-to-point correspondence
between the two scans introduces an additional error into
the relative pose estimate [26]. This may be alleviated
somewhat by approximating a continuous surface from
the reference scan [7, 29]. Surface approximation also
tends to improve alignment when the density of points
in the reference scan is unevenly spaced. A cheap but
effective approximation is accomplished by a simple
interpolation scheme, whereby for each q̂r

i ∈ q̂r, the
nearest neighbour pr

j is found, and two line segments
are formed joining pr

j to its adjacent points pr
j−1 and

pr
j+1. (We presume the points pr are ordered along the

surface of the reference scan, thereby forming a poly-
line surface approximation.) The point correspondence
then is computed as the closest point to q̂r

i on these two
segments. An example of interpolated correspondence is
shown in Fig. 2.

The second problem with the above ICP algorithm
is the appearance of outlier points in the second scan.
These may be due to viewpoint variation, dynamic ob-
jects, clutter, or sensor anomalies. A simple solution is to
apply a distance threshold G to gate out correspondences
where ||pr

j − q̂r
i || > G.

For the experiments performed in this paper, raw

Fig. 2. Interpolated correspondence between two scans. For each
×, the nearest + is found, and two segments are drawn connecting
this + to its adjacent +’s. (Of course, only a single segment is
formed for an end-point +.) The correspondent point is computed
as the closest point on these segments to the ×.

data points and an interpolating ICP algorithm are used
to represent and align the landmark shape models. A
graduated gating scheme is applied, with a 0.5 metre
gate in the first iteration, reduced after each subsequent
iteration until the final iteration has a gate of 0.05 metres.

IV. SCAN SEGMENTATION

Segmentation is the process of splitting a scan into
several coherent clusters. For Scan-SLAM, segmentation
is necessary to define new shape models or to augment
existing models. The choice of segmentation method is
rather arbitrary and will be dependent on other design
choices such as the alignment and covariance estimation
strategies.

One option is to consider measurements in angle-
order and segment point clusters at range discontinuities
as shown in Fig. 3(a). The problem here is that some
segments are very linear and may be difficult to align
properly. Either one chooses to discard these sort of
segments or devises alignment and covariance estimation
methods that can generate reliable results. Combining
several orthogonal segments together is another option.

An alternative segmentation strategy is to place model
origins at the centre of point clusters and associate all
points within a certain radius of the cluster to that
model, as in Fig. 3(b). Clearly there are many possible
segmentation schemes.

Fig. 4 shows a map created with many small models.
Here the segments for model creation are generated using
the approach in Fig. 3(a), but model augmentation (see
Section VIII) is performed so that new points are added
to a model only if they lie within the model’s original

tbailey
Highlight

tbailey
Sticky Note
Actually, Appendix C exists only in an earlier draft of [20] (available online). It was removed from the 1997 publication.
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(a) Segment on range discontinuities (b) Segment according to distance from local origin

Fig. 3. Two of many possible segmentation strategies. Segmentation is required for two operations: creation of new models, and augmentation
of existing models. The segmentation method will determine the size, distribution and evolution of the models.

segment bounds. The result is many small models,
with different parts of the surface of a single physical
object being represented by multiple models. On the
other hand, Fig. 5 treats the whole scan as a single
segment, in which case Scan-SLAM becomes equivalent
to trajectory-oriented SLAM.

V. SCAN ALIGNMENT

When a new range-scan is obtained, models are
aligned with the scan according to the process described
in Section II. Each candidate model is aligned against
the entire scan; the new scan is not segmented prior to
alignment.

Given an ideal correlation function, and unlimited
computation, scan alignment and subsequent estimation
of uncertainty (see Section VI) should produce similar
results regardless of the choice of segmentation strat-
egy. However, in practice, smaller landmarks tend to
be less reliable than models defined by whole scans.
The problem is that smaller models contain less align-
ment information, and so will tend to give larger less-
Gaussian alignment uncertainties. Furthermore, for effi-
ciency, alignment and covariance estimation are typically
performed as two separate operations, not as a full
Bayesian solution. First, the model and scan are given
a maximum-likelihood alignment (using ICP, say), and
then covariance is computed by a local approximation
about the maximum. Of particular concern are models,

such as lines, whose alignment is insufficiently con-
strained. While the alignment uncertainty of such models
should be captured by the covariance estimate, it is
difficult to obtain an accurate covariance approximation
when the uncertainty is very large or if the alignment
falls into a local minima. Also, approximation errors
from multiple small models will tend to compound. One
solution might be to reject all models that do not generate
a confident pose alignment (determined, perhaps, by
analysis of the determinant or trace of the alignment
covariance estimate).

Small models are least reliable if they are aligned
individually, since a single local minima may irrevocably
skew the entire SLAM estimate. A better, though more
complicated and expensive, implementation would align
groups of models simultaneously, accounting for their
joint cross-correlations. Therefore, while smaller sub-
scan shape models can, in principle, be as good as
matching whole scans, Scan-SLAM will generally be
simpler to implement, and more accurate and reliable
with larger models.

A separate practical issue encountered with any scan
alignment algorithm is the problem of visible surfaces.
When approaching an object from one direction, the
vehicle will observe the surface of the side facing it.
If the vehicle later approaches the object from another
direction, observing the opposite side, there is the poten-
tial for scan-matching to inadvertently align the opposing
surfaces. This is particularly so for office walls (see
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Fig. 4. Scan-SLAM map composed of many small models. Models are created with data segmented at range discontinuities. Models are
augmented with points that fall within the region of the original model surface.
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Fig. 5. Scan-SLAM map composed of full-scan models. The model coordinate frames are the vehicle pose estimates.
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Fig. 6. Closeup view of the office environment from Fig. 5. The
scan matched map shows surfaces from both sides of cubical walls.
Point angle order can be used here to help avoid misalignment.

Fig. 7. Angle ordered points for visible surface discrimination.
The original scan is obtained from the blue vehicle (top-left), and
stored in counter-clockwise order. From the pose of the red vehicle
(bottom-left), the algorithm predicts that only the marked points
(red ×’s) are visible. From the pose of the green vehicle (right), all
points are predicted to lie on a non-visible surface.

Fig. 6) and rectilinear objects (boxes, parked cars, etc.),
whose opposite sides have similar shape. A solution is
to record the angle-order of scan-points in the coordinate
frame from which the scan was taken.

Consider the scenario in Fig. 7. The blue vehicle
obtains a scan of an object, and stores the points pb ={
pb

1, . . . ,p
b
N

}
in counter-clockwise2 order,

θb
i < θb

j , ∀ i < j, (5)

where θb
i = arctan yb

i

xb
i
. Suppose, at some later time,

the vehicle moves to the pose of the red vehicle, with
estimated pose x̂b

r = [x̂b
r, ŷ

b
r, φ̂

b
r]

T relative to the blue

2The points might equally have been stored in clockwise order, but
counter-clockwise is chosen because it is the ordering of common
scanning lasers.

vehicle. The blue vehicle scan is transformed to the
coordinate frame of the red vehicle as3

p̂r
i =

[
cos φ̂b

r sin φ̂b
r

− sin φ̂b
r cos φ̂b

r

](
pb

i −
[

x̂b
r

ŷb
r

])
. (6)

The angle of these points θr
i = arctan yr

i

xr
i

indicates
whether the surface is facing towards θr

i < θr
j or away

from θr
j < θr

i the new observer. In practice, it is sufficient
to compare adjacent points, such that p̂r

i is considered a
facing surface point if θr

i−1 < θr
i < θr

i+1.
While this heuristic is deterministic, since it does not

consider the uncertainty of x̂b
r or of the measurements,

it gives a good indication of non-visible surfaces when
recomputed after each ICP iteration.

VI. COMPUTING AN APPROXIMATE COVARIANCE

The ideal covariance obtained from scan alignment is
the second moment of the correlation likelihood function.
In computing a covariance estimate, there are three levels
of approximation. First, the likelihood function itself is
approximate. A grid-based representation may approach
the optimal likelihood function using cross-correlation,
as the grid-cells become infinitesimal. An ICP-based
likelihood function, on the other hand, does not capture
information about free-space, and also introduces an
artificial point-to-point correspondence. The second level
of approximation is that the covariance represents only
the second moment of the likelihood function, which
may be a poor approximation if the likelihood is very
non-Gaussian. The third approximation is the covariance
estimate, since computing an accurate second moment
can be expensive. We address these three forms of
approximation in turn.

A. Scan Correlation Likelihood Function

For the ICP algorithm with isotropic point uncertainty,
linear interpolation and gating, the likelihood function
for the pose of frame s relative to frame r is,

Λ(xr
s) =

A∏

i

N (pr
j − qr

i , 2P)
B∏

i

N (G, 2σ2), (7)

where qr
i is the scan point projected according to (4),

pr
j is the corresponding point interpolated from the

reference scan, P = σ2I is the isotropic point uncer-
tainty, and G is the gate distance threshold. Of the total
points in {qr

i }M
i=1, there are A points with corresponding

neighbours and B = M − A points gated out. More

3Notice that this equation is the same as (3), but for points not
poses, and is the inverse operation to (4).

tbailey
Note
This equation is incorrect. There is another constant term for each gated point.
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numerically stable computation is possible using the log-
likelihood,

log Λ(xr
s) =

A∑

i

(
C1 − νT

i P−1νi

)
+

B∑

i

(
C2 − G2

σ2

)
,

(8)
where νi = pr

j−qr
i . Since it is only necessary to evaluate

a likelihood function to proportionality, the constant
offsets C1 and C2 can be ignored in the log-likelihood,

log Λ(xr
s) = −

A∑

i

(
νT

i P−1νi

)− 2BG2

σ2

= − 1
σ2

(
A∑

i

νT
i νi + BG2

) (9)

The full likelihood function algorithm should also incor-
porate the assignment of point-to-point correspondences
as in the following MATLAB function.

function L = loglikelihood(p,q,x,G,S)
qr = transform_frame(q,x);
[pj,i] = neighbour_interp(p,qr,G);
B = size(qr,2) - length(i);
v = pj - qr(:,i);
D = sum(dot(v,v,1));
L = -(D + B*Gˆ2) / S;

Different likelihood functions presented in the literature
account for unequal and non-isotropic sensor noise, and
give a more realistic projection of the sensor’s range-
bearing uncertainty into Cartesian space [26, 6]. How-
ever, for a high accuracy sensor like a scanning laser,
the sensor uncertainty modelling is less critical than
accounting for correspondence uncertainty. In the above
algorithm, the reevaluation of correspondence each time
the function is called with a different xr

s incorporates
this aspect. This likelihood function generates reasonable
covariance estimates even though the point uncertainty
model is isotropic. A better likelihood function would
incorporate both sensor uncertainty and correspondence
uncertainty.

B. Moment Approximation of the Likelihood Function

Approximating a non-Gaussian likelihood function by
its first two moments is reasonable when there is plenty
of data in both scans, allowing unambiguous maximum-
likelihood pose alignment. When the true uncertainty is
compact, it is usually well represented by a Gaussian.
On the other hand, when there is little overlap between
scans or lack of orthogonal constraints, the likelihood
function can have quite non-Gaussian shape and be ill-
represented by its second moment. The consequences of

this problem will depend on the covariance estimation
method; if the estimate is able to reliably detect very
uncertain alignments, then they can be safely rejected
and will not cause further damage. If however, the
estimate merely underestimates uncertainty, the resultant
observation model can spoil the entire SLAM estimate.

C. Estimating Covariance

Laplace’s method [21, Chapter 27] is a popular tech-
nique for approximating a function by a Gaussian. Sev-
eral variations of this approach have been presented
for scan-matching covariance estimation [20, 26, 2,
24, 6]. The basic implementation is to first perform
maximum-likelihood alignment, and then compute the
second-derivative (i.e., the curvature or Hessian) of the
likelihood function about the max-likelihood point.

One problem with using the Hessian is that it does not
naturally account for uncertainty in correspondence, and
an analytical solution will compute the local curvature
assuming the max-likelihood point-to-point associations
are correct. A better solution is to approximate the
Hessian numerically, using samples drawn sufficiently
widely about the max-likelihood location to exercise
correspondence changes. However, this can lead to wide
variation in the covariance estimate depending on the
chosen sample set.

Another problem with Laplace’s method is that it
doesn’t account for the possibility of multiple local
minima. The only way to address local minima is to
adequately search the relevant space of the likelihood
function. One way to search the space is to draw N
samples from the prior distribution of xr

s, and use each
sample to initialise a separate run of ICP, each converg-
ing to a perhaps different local minima. The covariance
estimate is then computed as a combination of the N
solutions [31, Section 3.3] [25].

Monte Carlo importance sampling is an alternative,
though rather expensive, method for estimating the first
and second moments. With this approach, N samples
are drawn from a proposal distribution, xi ∼ q (xr

s), and
are weighted according to the ratio of the likelihood
function and the proposal, wi = Λ(xi)/q (xi). The
weights are normalised, such that w?

i = wi/
∑N

j=1 wj ,
and the weighted samples are then used to compute the
sample mean and covariance.

x̂r
s =

N∑

i=1

w?
i xi (10)

Pr
s =

N∑

i=1

(
w?

i xixT
i

)− x̂r
sx̂

rT
s (11)

tbailey
Note
This is not correct. In my hast, I have made a mistake in Equation 9. Fixing it is left as an exercise to the interested reader.
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Fig. 8. Covariance estimates for the likelihood function of nearest
neighbours with interpolation and gating. The reference scan is
shown as blue dots and the models as green ×’s. The estimated
covariances are depicted by red 3-σ ellipses.

Given many samples, and an appropriate proposal distri-
bution, importance sampling can approximate moments
of the likelihood function to arbitrary accuracy, but in
practice there is a tradeoff with computational expense.

An example of an importance sampling estimate using
the likelihood function described above is shown in
Fig. 8. This figure shows a single reference scan and
three models, each aligned separately. The covariance
estimates are computed to high accuracy using 3000
samples. Notice that the mean of the top estimate is
misaligned; also the second moment probably does not
fully capture the shape of the likelihood function. The
best option here might be to compute the trace of the
covariance and, if it exceeds a threshold, reject that
model observation. The right-hand model exhibits accu-
rate alignment estimate, while the bottom model is fairly
uncertain. This is an example where full-scan alignment
would be preferable to smaller segmented models.

VII. DATA ASSOCIATION

The entire process of scan registration is fundamen-
tally a data association operation. However, in this
section we are interested is two specific aspects of
data association apart from scan alignment itself: the
search for candidate models, and validation gating. These
two operations occur before and after scan alignment,
respectively.

A. Candidate Search

When the vehicle obtains a new scan, it must deter-
mine which of its existing models might possibly overlap
with this scan, and are therefore candidates for matching.

This operation is particularly hard because the landmark
shape models may extend arbitrarily far from their local
coordinate frames. So, while comparing the Mahalanobis
distance of the landmark frame location to the vehicle
frame is a cheap option, it does not account for model
extent and will be a very suboptimal test. On the other
hand, exhaustive tentative alignments of all models with
the scan might work reasonably well, but is prohibitively
expensive.

For small-scale environments, it is sufficient to as-
sume that the errors are small, and simply choose those
landmarks whose frames are predicted to fall within the
vehicle field-of-view. A projection of their model points
into the vehicle frame, and a gated nearest-neighbours
test of the model points to the scan points, will give a
reasonable indication of the amount of overlap.

However, this approach will not work reliably in larger
environments where there is significant pose uncertainty.
Fortunately, existing methods for large-error association
are applicable to initialising scan alignment. One option
is to extract features, such as foreground points or corner
points, from the models and the current scan, and apply
batch data association on these features [1, 22]. The
discussion in [1, Section 6.3] gives an efficient multi-
pass strategy for this approach. An alternative solution
is to generate appearance signatures for each model,
and perform signature matching with the current scan
to generate candidate model proposals [23, 5].

B. Validation Gating

After scan alignment and covariance estimation has
generated an observation {z,R}, and before performing
data-fusion with this observation, it is essential to per-
form validation to determine that the observation is not
spurious. The standard Mahalanobis distance gate should
be applied, preferably as a batch validation of all current
observation hypotheses at once [1, 22].

However, landmark shape models also contain size
and shape information that may be used as further dis-
crimination measures. This is important when scanning
lasers are used in realistic environments, since each laser
scan measures a 2-D slice of the environment. When the
vehicle pitches or travels over non-flat terrain, it takes
slices of different planes, which can give rise to varying
shapes appearing in close proximity over a sequence of
scans.

A simple, though not particularly effective, shape
matching gate can be applied by counting the number (or
percentage) of points in the model that find acceptable
nearest-neighbour associations in the current scan, as
shown in Fig. 9. Superior shape matching techniques
may be found in the literature (see, e.g., [30, 32]).
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Fig. 9. Shape matching by counting the number of points with close
nearest-neighbours after scan alignment. In this image, 7 out of 15
(i.e., 47%) of the × points find neighbours closer than a 2cm gate.
(We count only those ×’s from the first to last associated points,
to allow for viewpoint variation.) The requirement of such a tight
gate to discriminate two rather different shapes indicates that this
method is rather suboptimal.

VIII. LANDMARK MODEL AUGMENTATION

As a landmark is viewed multiple times, possibly
from different vantage points, the shape model may be
augmented with the new data. While, strictly speaking,
the model estimate is dependent on the SLAM estimate
and should form part of the joint state vector, it is
reasonable to treat model updates separately when the
entire landmark lies within the sensing range. That is,
if the error in model shape estimate is small, the bias
introduced into the SLAM estimate by assuming inde-
pendence is also small. By analogy with conventional
SLAM, it is no different to the bias introduced by using
a geometric circle model for a tree trunk that is not quite
circular. An example of an object model augmented with
multiple scans is shown in Fig. 10. After the alignment
of many scans, the model could be subsampled to reduce
its computational cost and to achieve a more even point
distribution over its surface.

Arguably one of the advantages of the landmark-
centric SLAM formulation is that it does not require
estimation of the vehicle trajectory or a record of past
scans. This allows it to operate reasonably efficiently
using an EKF. However, the sparse information-form
implementations of trajectory-centric SLAM have shown
that keeping past pose estimates can actually increase
estimate efficiency, by avoiding the information fill-
in caused by marginalisation [12, 8]. Furthermore, the
model augmentation process described above may be
applied at the level of whole scans, wherein nearby

neighbourhoods of scans are merged to a single common
coordinate frame, forming large multi-scan landmarks.
(Although, it is possible that treating whole-scan merging
as independent of the SLAM estimate may introduce
more significant bias than for augmentation of smaller
landmark models.) Therefore, whole-scan matching may
also be formulated as landmark-centric SLAM and be
performed in an EKF framework with relative efficiency.

IX. CONCLUSION

Scan-SLAM is a landmark-centric SLAM algorithm,
with the same basic estimation structure as the earliest
stochastic SLAM solutions. Its key difference is the def-
inition of landmark shape models from raw sensor data,
and defining the joint state vector of the SLAM estimate
as the poses of model coordinate frames. Landmark-
centric scan-matching SLAM shares much in common
with existing trajectory-centric scan-matching SLAM
algorithms, and the latter may be seen as a particular case
wherein the landmarks are defined as whole scans. As
such, there is significant overlap in the implementation
issues for both forms.

Reliable estimation of scan alignment and its uncer-
tainty is a non-trivial problem. The choice of representa-
tion, such as grids or points, presents tradeoffs in terms
of computation, storage, and alignment assumptions.
Maximum-likelihood alignment is prone to local minima,
which can only be addressed by either having a good
initial estimate or by adequately searching the likelihood
space. And, since the likelihood function is typically
very non-Gaussian, it can be difficult or expensive to
compute a reliable covariance estimate. Nevertheless,
the richness of a scan-based shape model may permit
stronger observation validation than traditional models.

This paper also presents several key components for
scan-matching SLAM in the small-to-medium scale. An
efficient interpolating variant of ICP is used for scan
alignment, and its covariance is found using a likeli-
hood function that accounts for correspondence uncer-
tainty. Non-visible surfaces are detected by examining
the angle-order of model points; validation gating is
assisted by shape comparison; and landmark models are
augmented with successive scans. These components are
a useful part of the toolbox necessary for an ICP-based
implementation of scan-matching SLAM.
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