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Abstract— This tutorial provides an introduction to the Si-
multaneous Localisation and Mapping (SLAM) method and
the extensive research on SLAM that has been undertaken.
Part I of this tutorial described the essential SLAM prob-
lem. Part II of this tutorial (this paper) is concerned with
recent advances in computational methods and in new for-
mulations of the SLAM problem for large scale and complex
environments.

I. Introduction

SLAM is the process by which a mobile robot can build
a map of the environment and at the same time use this
map to compute it’s location. The past decade has seen
rapid and exciting progress in solving the SLAM problem
together with many compelling implementations of SLAM
methods. The great majority of work has focused on im-
proving computational efficiency while ensuring consistent
and accurate estimates for the map and vehicle pose. How-
ever, there has also been much research on issues such as
non-linearity, data association and landmark characterisa-
tion, all of which are vital in achieving a practical and
robust SLAM implementation.

This tutorial focuses on the recursive Bayesian formula-
tion of the SLAM problem in which probability distribu-
tions or estimates of absolute or relative locations of land-
marks and vehicle pose are obtained. Part I of this tutorial
surveyed the development of the essential SLAM algorithm
in state-space and particle-filter form, described a number
of key implementations and cited locations of source code
and real-world data for evaluation of SLAM algorithms.
Part II of this tutorial (this paper), surveys the current
state of the art in SLAM research with a focus on three
key areas; computational complexity, data association, and
environment representation. Much of the mathematical no-
tation and essential concepts used in this paper are defined
in Part I of this tutorial and so are not repeated here.

SLAM, in it’s naive form, scales quadratically with the
number of landmarks in a map. For real-time implemen-
tation, this scaling is potentially a substantial limitation
in the use of SLAM methods. Section II surveys the
many approaches that have been developed to reduce this
complexity. These include linear-time state augmentation,
sparsification in information form, partitioned updates and
submapping methods. A second major hurdle to overcome
in implementation of SLAM methods is to correctly as-
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sociate observations of landmarks with landmarks held in
the map. Incorrect association can lead to catastrophic
failure of the SLAM algorithm. Data association is par-
ticularly important when a vehicle returns to a previously
mapped region after a long excursion; the so-called ‘loop-
closure’ problem. Section III surveys current data as-
sociation methods used in SLAM. These include batch-
validation methods that exploit constraints inherent in the
SLAM formulation, appearance-based methods, and multi-
hypothesis techniques. The third development discussed in
this tutorial is the trend towards richer appearance-based
models of landmarks and maps. While initially motivated
by problems in data association and loop closure, these
methods have resulted in qualitatively different methods of
describing the SLAM problem; focusing on trajectory esti-
mation rather than landmark estimation. Section IV sur-
veys current developments in this area along a number of
lines including delayed mapping, the use of non-geometric
land-marks, and trajectory estimation methods.

SLAM methods have now reached a state of consider-
able maturity. Future challenges will centre on methods
enabling large scale implementations in increasingly un-
structured environments and especially in situations where
GPS-like solutions are unavailable or unreliable; in urban
canyons, under foliage, underwater or on remote planets.

II. Computational Complexity

The state-based formulation of the SLAM problem in-
volves the estimation of a joint state composed of a ro-
bot pose and the locations of observed stationary land-
marks. This problem formulation has a peculiar structure;
the process model only affects vehicle pose states and the
observation model only makes reference to a single vehicle-
landmark pair. A wide range of techniques have been de-
veloped to exploit this special structure in limiting the com-
putational complexity of the SLAM algorithm.

Techniques aimed at improving computational efficiency
may be characterised as being optimal or conservative. Op-
timal algorithms aim to reduce required computation while
still resulting in estimates and covariances which are equal
to the full-form SLAM algorithm (as presented in Part I of
this tutorial). Conservative algorithms result in estimates
which have larger uncertainty or covariance than the op-
timal result. Usually conservative algorithms, while less
accurate, are computationally more efficient and therefore
of value in real implementations. Algorithms with uncer-
tainties or covariances less than those of the optimal so-
lution are termed inconsistent and are considered invalid



solutions to the SLAM (or any estimation) problem.

The direct approach to reducing computational com-
plexity involves exploiting the structure of the SLAM
problem in re-formulating the essential time and obser-
vation update equations to limit required computation.
The time-update computation can be limited using state-
augmentation methods. The observation-update computa-
tion can be limited using a partitioned form of the update
equations. Both these steps result in an optimal SLAM
estimate with reduced computation. Re-formulation of the
standard space-space SLAM representation into informa-
tion form allows sparsification of the resulting information
matrix to be exploited in reducing computation. The re-
sulting algorithms are conservative but still yield good es-
timates with much reduced computational effort. Submap-
ping methods exploit the idea that a map can be broken
up into regions with local coordinate systems and arranged
in a hierarchical manner. Updates can occur in a lo-
cal frame with periodic inter-frame updates. Submapping
techniques generally provide a conservative estimate in the
global frame.

A. State Augmentation

At a time k, the joint SLAM state vector x; =
[xI ,m™]" comprises two parts; the robot pose x,, and
the set of map landmark locations m. The vehicle model
propagates only the pose states according to a set of control
inputs uy while leaving the map states unchanged:
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In a naive implementation of the extended Kalman filter
(EKF) for SLAM, the covariance prediction is computed
from

Pijp—1 = Vi Py VEL + VE, UpVEL  (2)

where Vi, = axif,l’ Vi, = % and Uy, is a covariance
characterising uncertainty on the control vector. This op-
eration has cubic complexity in the number of landmarks
due to matrix multiplication of the Jacobian Vfy and the
covariance matrix Pj_;;_;. However, as only the pose
states are affected by the vehicle model, the covariance
prediction can be re-written in a form which has linear

complexity in the number of landmarks [53, Section 2.4.1]:
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The process of adding a new landmark to the state vector
has a similar form. A new map landmark is initialised as

a function of the robot pose and an observation zy.

Mpyew = & (Xvk ) zk) (4)

The augmented states are then a function of only a small
number of existing states

Xo,
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The general idea of state augmentation can be applied
whenever new states are a function of a subset of existing
states
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A comparison of Equations 1 and 3 with Equations 6 and
7, show that the SLAM prediction step is a special case
of state augmentation; in which the state is augmented by
the new pose x,,, and where the previous pose x,, , is
removed by marginalisation. In this form, both the EKF
prediction step and the process of adding new landmarks
can be reduced to calculations that are linear in the number
of landmarks. The predictions made are clearly optimal.

B. Partitioned Updates

A naive implementation of the SLAM observation-
update step updates all vehicle and map states every time a
new measurement is made. For an EKF update, the com-
putational effort scales quadratically with the number of
landmarks held in the map. A number of partitioned up-
date methods have been devised to reduce this computa-
tional effort. These confine sensor-rate updates to a small
local region and update the global map only at a much
lower frequency. These partition methods all produce op-
timal estimates.

There are two basic types of partitioned update. The
first operates in a local region of the global map and main-
tains globally referenced coordinates. This approach is
taken by the compressed EKF (CEKF) [21] and the post-
ponement algorithm [28]. The second generates a short-
term submap with its own local coordinate frame. This is
the approach of the constrained local submap filter (CLSF)
[53] and the local map sequencing algorithm [45]. We focus
on this latter approach as it is simpler and, by performing
high-frequency operations in a local coordinate frame, it
avoids very large global covariances and so is more numer-
ically stable and less affected by linearisation errors.

The local submap algorithm maintains at all times two
independent SLAM estimates
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where x¢ is a map composed of a set of globally referenced
landmarks m¢ together with the global reference pose of
a submap coordinate frame xlc,i, and where xp is the local
submap with a locally referenced vehicle pose x* and lo-
cally referenced landmarks mp as shown in Figures 1(a)
and 1(b), respectively.
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Fig. 1. The constrained local submap filter. The SLAM frontier
is constructed in a local map (b) which periodically registers with a
global map (a) to produce an optimal global estimate (c).

As observations are made, conventional SLAM updates
are performed entirely within the local submap and with
only those landmarks held in the local submap. It is pos-
sible to obtain a global vehicle pose estimate at any time
by simple vector summation of the locally referenced pose
and the global estimate of the submap coordinate frame.
An optimal global estimate is obtained periodically by reg-
istering the submap with the global map, see Figure 1(c),
and applying constraint updates upon any features com-
mon to both maps. At this point a new submap is created
and the process continues.

The submap method has a number of advantages. First,
the number of landmarks that need to be updated at any
one time is limited to only those that are described in the
local submap coordinate frame. Thus, the observation-rate
update is independent of the total map size. The full up-
date, and propagation of local estimates, can be carried out
as a background task at a much lower update rate while
still permitting observation-rate global localisation. A sec-
ond advantage is that there is lower uncertainty in a locally
referenced frame so approximations due to linearisation are

reduced. Finally, submap registration can use batch vali-
dation gating, so improving association robustness.

C. Sparsification

Conventional EKF-SLAM produces a state estimate Xy,
and covariance matrix Py which implicitly describe the first
two central moments of a Gaussian probability density on
the true state xj;. An alternative representation for this
same Gaussian is in canonical or information form using the
information vector y; and information matrix Y. These
are related to the moment form parameters as

Y, =P;! (9)
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The advantage of the information form for SLAM is that,
for large-scale maps, many of the off-diagonal components
of the normalised information matrix are very close to zero.
Thrun et al. [47], [48] have exploited this observation to
propose a sparsification procedure which allows near zero
elements of the normalised information matrix to be set
to zero. With the information matrix now sparse, very
efficient update procedures for information estimates can
be obtained with relatively little loss in optimality of the
maps produced. Although this initial solution was subse-
quently shown not to be consistent by Eustice et al. [17],
the idea of sparsification has sparked considerable interest
in the information form SLAM problem and several con-
sistent sparse solutions [42], [19], [18], [50], [12], [52] have
been presented. Of particular note are those solutions that
are optimal and exactly sparse [19], [18], [12].

The key to exact sparsification of the information form
of the SLAM problem is to notice that state augmenta-
tion is a sparse operation. Consider the moment-form aug-
mentation identity in Equations 6 and 7. These have an
equivalent information-form identity.
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where, for simplicity, it is assumed that noise is zero-mean
additive f(x2,q) = f(x2)+q. Assuming the subset of states
x1 comprises the bulk of the map states, then Equation 12
is sparse and has constant-time complexity, compared to
Equation 7 which has linear complexity in the dimension
of X1.

Therefore, in the information form SLAM problem, an
exactly sparse solution can be obtained by augmenting the
state with the new vehicle pose estimate at each time-step
and retaining all past robot poses,

T T T
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In this way, the off-diagonal terms of the information ma-
trix are non-zero only for poses and landmarks that are



directly related by measurement data (see Figure 2(a)).
Observation updates are also a sparse operation, produc-
ing links only between measured states.

However, marginalisation, which is necessary to remove
past pose states, introduces links between all state elements
connected to the removed states. Marginalising all past
states produces a dense information matrix as shown in
Figure 2(c). Nevertheless, it is possible to retain a reason-
ably sparse estimate without having to keep an entire pose
history [19]. By judicious selection of anchoring poses to
decouple different regions of the map, a great proportion of
poses can be marginalised away without inducing excessive
density as shown in Figure 2(b).

Despite the attraction of its sparse representation, there
remain serious caveats with regard to practical implemen-
tation of information form SLAM. For realistic use, it is
necessary to recover the mean and covariance of the state
at every timestep. This is potentially very expensive. The
mean estimate is required to perform linearisation of the
process and observation models. It can be recovered fairly
efficiently using the conjugate gradients method [16]. The
mean and covariance are both required to compute vali-
dation gates for data association. While efficient solutions
have been devised for simple gating [48], [16], the robust
batch gating methods described in Section III potentially
involve recovery of the full covariance matrix, which has a
cubic complexity in the number of landmarks.

D. Global submaps

Submap methods are another means of addressing the is-
sue of computation scaling quadratically with the number
of landmarks during measurement updates. Submap meth-
ods come in two fundamental varieties: globally referenced
and locally referenced as shown in Figure 3. The common
thread to both types is that the submap defines a local co-
ordinate frame and nearby landmarks are estimated with
respect to the local frame. The local submap estimates
are obtained using the standard, optimal, SLAM algorithm
using only the locally referenced landmarks. The resulting
submap structures are then arranged in a hierarchy leading
to computational efficiency but also lack of optimality.

Global submap methods estimate the global locations
of submap coordinate frames relative to a common base
frame. This is the approach adopted in the relative land-
mark representation (RLR) [22], hierarchical SLAM [15],
and constant time SLAM (CTS) [30] methods. These ap-
proaches reduce computation from a quadratic dependence
on number of landmarks, to a linear or constant time de-
pendence by maintaining a conservative estimate of the
global map. However, as submap frames are located rela-
tive to a common base coordinate frame, global submaps
do not alleviate linearisation issues arising from large pose
uncertainties.

E. Relative Submaps

Relative submap methods differ from global submaps in
that there is no common coordinate frame. The location
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(b)Locally referenced submaps

Fig. 3. Global and relative submaps.

of any given submap is recorded only by its neighbour-
ing submaps, and these are connected in a graphical net-
work. Global estimates can be obtained by vector summa-
tion along a path in the network. By eschewing any form
of global-level data fusion, relative submaps address both
computation and non-linearity issues.

The original notion of relative submaps was introduced
by Chong and Kleeman [8]. This was further developed
by Williams [53] in the form of the constrained relative
submap filter (CRSF). However, CRSF does not exhibit
global level convergence without forfeiting the decoupled
submap structure. The Atlas framework [6], [7] and net-
work coupled feature maps (NCFM) [2] rectified this prob-
lem by realising that conservative global convergence could
be achieved using the covariance intersect algorithm [26] for
estimating connections. These algorithms result in a net-

work of optimal SLAM submaps connected by conservative
links.

The relative submap framework has a number of advan-
tages. In particular, it produces locally optimal maps with
computational complexity independent of the size of the
compete map. Further, by treating updates locally it is
numerically very stabled, allows batch association between
frames and minimises problems arising from linearisation
in a global frame.



(a)No marginalisation

Fig. 2.
number of retained pose states and matrix sparsity.

IT1I. Data Association

Data association has always been a critical issue for prac-
tical SLAM implementations. Before fusing data into the
map, new measurements are associated with existing map
landmarks and, after fusion, these associations cannot be
revised. The problem is that a single incorrect data asso-
ciation can induce divergence into the map estimate, often
causing catastrophic failure of the localisation algorithm.
SLAM algorithms will be fragile when one hundred percent
correct associations are mandated for correct operation.

A. Batch Validation

Almost all SLAM implementations perform data asso-
ciation using only statistical validation gating, a method
inherited from the target-tracking literature for culling un-
likely associations [4]. Early SLAM implementations con-
sidered each measurement-to-landmark association individ-
ually by testing whether an observed landmark is close to
a predicted location. Individual gating is extremely unreli-
able if the vehicle pose is very uncertain and fails in all but
the most sparsely populated and structured environments.

An important advance was the concept of batch gating,
where multiple associations are considered simultaneously.
Mutual association compatibility exploits the geometric re-
lationship between landmarks. The two existing forms of
batch gating are the joint compatibility branch and bound
(JCBB) [37] method which is a tree-search, and combined
constraint data association (CCDA) [2], which is a graph
search (see Figure 4). The latter, and also a randomised
variant of JCBB [38], are able to perform reliable associa-
tion with no knowledge of vehicle pose whatsoever.

Batch gating alone is often sufficient to achieve reliable
data association: If the gate is sufficiently constrained, as-
sociation errors have insignificant effect [5], and if a false
association is made with an incorrect landmark which is
physically close to right one, then the inconsistency is mi-
nor. This may not always be valid and, especially in large
complex environments, more comprehensive data associa-
tion mechanisms (such as multi-hypohesis tracking [4]) may
be necessary.

(b)Partial marginalisation

(c)Full marginalisation

Exact information matrix SLAM. These information matrices all represent optimal map estimates, but show the tradeoff between
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Fig. 4. Combined constraint data association (CCDA) performs

batch validation gating by constructing and searching a correspon-
dence graph. The graph nodes represent associations that are possible
when considered individually. The edges indicate compatible associ-
ations, and a clique is a set of mutually compatible associations (e.g.,
the clique 2, 6, 10 implies associations a; — ba,a2 — b3,as — b1
may coexist).

B. Appearance Signatures

Gating on geometric patterns alone is not the only av-
enue for reliable data association. Many sensing modali-
ties, such as vision, provide rich information about shape,
colour and texture, all of which may be used to find a corre-
spondence between two data sets. For SLAM, appearance
signatures are useful to predict a possible association, such
as closing a loop, or for assisting conventional gating by
providing additional discrimination information.

Historically, appearance signatures and image similarity
metrics have been developed for indexing image databases
[43] and for recognising places in topological mapping [1],
[49]. More recently, appearance measures have been ap-
plied to detecting loops in SLAM [23], [39]. The work on
visual appearance signatures for loop detection by New-
man et al. [39] introduces two significant innovations. A



similarity metric over a sequence of images, rather than
a single image, is computed and an eigenvalue technique
is employed to remove common-mode similarity. This ap-
proach considerably reduces the occurrence of false posi-
tives by considering only matches that are interesting or
uncommon.

C. Multi-hypothesis data association

Multi-hypothesis data association is essential for robust
target tracking in cluttered environments [4]. It resolves
association ambiguities by generating a separate track es-
timate for each association hypothesis, creating over time
an ever branching tree of tracks. The number of tracks is
typically limited by the available computational resources
and low likelihood tracks are pruned from the hypothesis
tree.

Multi-hypothesis tracking (MHT) is also important for
robust SLAM implementation, particularly in large com-
plex environments. For example in loop closure, a robot
should ideally maintain separate hypotheses for suspected
loops, and also a “no-loop” hypothesis for cases where the
perceived environment is structurally similar. While MHT
has been applied to mapping problems [9], this has yet
to be applied in the SLAM context. A major hurdle is
the computational overhead of maintaining separate map
estimates for each hypothesis. Tractable solutions may be
possible using sparsification or submap methods. The Fast-
SLAM algorithm is inherently a multi-hypothesis solution,
with each particle having its own map estimate. A signifi-
cant attribute of the FastSLAM algorithm is its ability to
perform per-particle data association [36].

IV. Environment Representation
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Fig. 5. Partial observation. Some sensing modalities cannot directly
observe a landmark location and require observations from multiple
vantage points.

Early work in SLAM assumed that the world could rea-
sonably be modeled as a set of simple discrete landmarks
described by geometric primitives such as points, lines or
circles. In more complex and unstructured environments—
outdoors, underground, subsea—this assumption often
does not hold.

A. Partial Observability and Delayed Mapping

Environment modeling depends both on the complexity
of the environment and on the limitations of the sensing
modality. Two common examples are sonar and vision.
Sonar sensors typically produce accurate range measure-
ments but often have large beam-width and side-lobes mak-
ing the bearing estimate unusable [31]. Measurements from
a single camera, on the other hand, provide bearing infor-
mation without an accurate indication of range.

SLAM with range-only sensors [32], [33] and bearing-
only sensors [11], [3] show that a single measurement is
insufficient to constrain a landmark location. Rather it
must be observed from multiple vantage points as shown in
Figure 5. More precisely, a single measurement generates
a non-Gaussian distribution over landmark location, and
multiple measurements are needed to obtain an estimate.
Generalised distributions, such as mixture models, permit
immediate, non-delayed landmark tracking [44]. One way
to obtain a Gaussian landmark estimate is to delay initial-
isation and instead accumulate raw measurement data. To
permit consistent delayed fusion, it is necessary to record
the vehicle pose for each deferred measurement. Thus, the
SLAM state is augmented with recorded pose estimates

xp, = [x1 ,xT xI'  m
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(14)
and the corresponding measurements are stored in an aux-
iliary list {zg,...,Zk—n}. Once sufficient information over
a period n has been collected, a landmark is initialised by a
batch update. Recorded poses that do not have any other
associated measurements are then simply removed from the
state.

Delayed fusion addresses far more than just partial ob-
servability. It is a general concept for increasing robust-
ness by accumulating information and permitting delayed
decision making. Given an accumulated data set, an im-
proved estimate can be obtained by performing a batch up-
date, such as bundle-adjustment [11] or iterated smoothing,
which dramatically reduces linearisation errors. Deferred
data also facilitates batch validation gating, and so aids
reliable data association.

B. Non-geometric landmarks

While EKF-SLAM is usually applied to geometric land-
marks (often misnamed ‘point landmarks’), the simple ex-
pedient of attaching a coordinate frame to an arbitrary
object allows the same methods to be applied to much
more general landmark descriptions. A recent contribu-
tion by Nieto et al. [40] shows that landmarks of arbitrary
shape may be dealt with by using EKF-SLAM to reconcile
landmark locations separately from the estimation of shape
parameters.

A landmark is described by a shape model which has
an embedded coordinate frame defining the landmark ori-
gin as shown in Figure 6(a). This model is auxiliary to
the SLAM process, and may have any representation that
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Fig. 6. SLAM with arbitrary shaped landmarks. Aligning a shape
model with sensed data produces a suitable observation model for
SLAM.

permits data alignment (e.g., a grid). When the robot ob-
serves the landmark, the shape model is aligned with the
measurement data as shown in Figure 6(b). Assuming this
alignment is approximately Gaussian, the vehicle-centric
estimate of the model coordinate frame is an observation
suitable for an EKF-SLAM update, where the map is com-
posed of landmark frame locations as in Figure 6(c).

C. 3-D SLAM

Implementing SLAM in 3-D is, in principle, a straight-
forward extension of the 2-D case. However, it involves
significant added complexity due to the more general vehi-
cle motion model and, most importantly, greatly increased
sensing and feature modeling complexity.

There exist three essential forms of 3-D SLAM. The first
is simply 2-D SLAM with additional map building capa-
bilities in the third dimension. For example, horizontal
laser-based SLAM with a second orthogonal laser mapping
vertical slices [46], [35]. This approach is appropriate when
the vehicle motion is confined to a plane. The second form
is a direct extension of 2-D SLAM to 3-D, with the extrac-
tion of discrete landmarks and joint estimation of the map
and vehicle pose. This has been implemented with monoc-
ular vision sensing by Davison et al. [10], and permits full
six degree-of-freedom motion (see also [27] for an airborne
application). The third form involves an entirely different
SLAM formulation, where the joint state is composed of a
history of past vehicle poses [16], [39]. At each pose, the
vehicle obtains a 3-D scan of the environment and the pose
estimates are aligned by correlating the scans.

D. Trajectory-Oriented SLAM

The standard SLAM formulation, as described in Part I
of this tutorial, defines the estimated state as the vehicle
pose and a list of observed landmarks

x; = [x; ,m"]". (15)

An alternative formulation of the SLAM problem that has

gained recent popularity is to estimate the vehicle trajec-
tory instead,

T T T
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(16)

This formulation is particularly suited to environments
where discrete identifiable landmarks are not easily dis-
cerned and direct alignment of sensed data is simpler or
more reliable. Notice that the map is no longer part of the
state to be estimated but rather forms an auxiliary data
set. Indeed, this formulation of the SLAM problem has no
explicit map, rather each pose estimate has an associated
scan of sensed data, and these are aligned to form a global
map. Figure 7 shows an example of this approach from
[39].

Fig. 7. Trajectory-based SLAM. Scans taken at each pose are aligned
according to their pose estimate to form a global map. Picture cour-
tesy of [39].

The FastSLAM algorithm may also be considered as an
example of trajectory estimation, with each particle defin-
ing a particular trajectory hypothesis. Several recent Fast-
SLAM hybrids use pose-aligned scans or grids in place
of a landmark map [24], [14], [20]. Another variation
of trajectory-based SLAM has developed from topologi-
cal mapping [34], where poses are connected in a graph-
ical network rather than a joint state vector. This frame-
work, known as consistent pose estimation (CPE) [23],
[29], is a promising alternative to state-space SLAM and
is capable of producing large-scale maps. The advent of
sparse information form SLAM has led to a third type of
trajectory-based SLAM [12], [18], [39], with sparse estima-
tion of Equation 16.

While trajectory SLAM has many positive characteris-
tics, these come with caveats. Most importantly, its state-
space grows unbounded with time, as does the quantity



of stored measurement data. For very long-term SLAM
it will eventually become necessary to coalesce data into
a format similar to the traditional SLAM map to bound
storage costs.

E. Embedded auxiliary information

Trajectory-based SLAM lends itself to representing spa-
tially located information. Besides scan data for mapping,
it is possible to associate auxiliary information with each
pose; soil salinity, humidity, temperature, or terrain char-
acteristics, for example. The associated information may
be used to assist mapping, to aid data association, or for
purposes unrelated to the mapping task, such as path plan-
ning or data gathering.

This concept of embedding auxiliary data is more dif-
ficult to incorporate within the traditional SLAM frame-
work. The SLAM state is composed of discrete landmark
locations and is ill suited to the task of representing dense
spatial information. Nieto et al. [41] have devised a method
called DenseSLAM to permit such an embedding. As the
robot moves through the environment, auxiliary data is
stored in a suitable data-structure, such as an occupancy
grid, and the region represented by each grid-cell is deter-
mined by a set of local landmarks in the SLAM map. As
the map evolves, and the landmarks move, the locality of
the grid region is shifted and warped accordingly. The re-
sult is an ability to consistently maintain spatial locality
of dense auxiliary information using the SLAM landmark
estimates.

F. Dynamic environments

Real world environments are not static. They contain
moving objects, such as people, and temporary structures
that appear static for a while but are later moved, such
as chairs and parked cars. In dynamic environments, a
SLAM algorithm must somehow manage moving objects.
It can detect and ignore them; it can track them as moving
landmarks; but it must not add a moving object to the
map and assume it is stationary.

The conventional SLAM solution is highly redundant.
Landmarks can be removed from the map without loss of
consistency, and it is often possible to remove large num-
bers of landmarks with little change in convergence rate
[13]. This property has been exploited to maintain a con-
temporaneous map by removing landmarks that have be-
come obsolete due to changes in the environment [2, Sec-
tion 5.1]. To explicitly manage moving objects, Héhnel et
al. [25] implement an auxiliary identification routine, and
then remove the dynamic information from a data scan be-
fore sending it to their SLAM algorithm. Conversely, Wang
et al. [51] add moving objects to their estimated state, and
provide models for tracking both stationary and dynamic
targets. Simultaneous estimation of moving and stationary
landmarks is very costly due to the added predictive model.
For this reason, the implemented solution first involves a
stationary SLAM update followed by separate tracking of
moving targets.

V. SLAM: Where to Next?

The SLAM method provides a solution to the key com-
petency of mapping and localisation for any autonomous
robot. The past decade in particular has seen substantial
progress in our understanding of the SLAM problem and in
the development of efficient, consistent and robust SLAM
algorithms. The standard state-space approach to SLAM
is now well understood and the main issues in representa-
tion, computation and association appear to be resolved.
The information-form of the SLAM problem has significant
unexplored potential in large-scale mapping, problems in-
volving many vehicles, and potentially in mixed environ-
ments with sensor networks and dynamic landmarks. The
delayed data fusion concept complements batch association
and iterative smoothing to improve estimation quality and
robustness. Appearance and pose-based SLAM methods
offer a radically new paradigm for mapping and location
estimation without the need for strong geometric landmark
descriptions. These methods are opening up new directions
and making links back to fundamental principles in robot
perception.

The key challenges for SLAM are in larger and more
persuasive implementations and demonstrations. While
progress has been substantial, the scale and structure of
many environments is limited. The challenge now is to
demonstrate SLAM solutions to large problems where ro-
botics can truly contribute: driving hundreds of kilometers
under a forest canopy or mapping a whole city without
recourse to GPS, and to demonstrate true autonomous lo-
calisation and mapping of structures such as the Barrier
Reef or the surface of Mars. SLAM has brought these pos-
sibilities closer.
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