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Abstract— This paper presents the development and demon-
stration of non-Gaussian, decentralised state estimationusing
an outdoor sensor network consisting of an autonomous air ve-
hicle, a manual ground vehicle, and two human operators. The
location and appearance of landmarks were estimated using
bearing only observations from monocular cameras. We show
that inclusion of visual and identity information aids validation
gating for data association when geometric information alone
cannot discriminate individual landmarks. The combination of
geometric, appearance, and identity information provided a
common description (or map) of natural features for each of
the nodes in the network. We also show the final map from
the live demonstration which includes position estimates and
classification labels of the observed features.

I. INTRODUCTION

This paper aims to demonstrate non-Gaussian algorithms
for decentralisedstate estimation using geometric informa-
tion with the aid of visual and identity information for
validation gating and data association. A common description
(or map) of natural features in an unstructured environment
was created online by an outdoor sensor network consisting
of an autonomous air vehicle, a manual ground vehicle,
and two human operators (Fig. 1). Unique aspects of this
demonstration were (1) use of colour information from vision
sensors to augment geometric information resulting in a rich
world map, (2) integration of human operators as information
sources, and (3) decentralised operation enabling a practical
system which was robust, modular, and scalable.

Applications that benefit from multi-sensor data fusion
include environmental sensing, surveillance, and search-and-
rescue [1], [2], [3]. In each of these problems, individ-
ual nodes of the network make local measurements or
observations of the common environment and attempt to
combine the measurements to produce a global estimate
of the observed state. The fusion approach adopted here
is motivated by the need to survey and map large outdoor
natural environments in which distributed sensor networks
are prone to node and/or communication failure. In contrast
to hierarchical and centralised distributed methods [4], [5],
decentralised architectures ensure robustness to these failures
while allowing scalability and modularity [6]. Three basic
constraints are required to guarantee these properties: 1)
There is no single central fusion centre and no node should
be central to the operation of the network, 2) There is no
common communications facility - communication must be
kept on a strictly node-to-node basis, and 3) Each node has
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Fig. 1. The platforms used in the network: autonomous air vehicle, ground
vehicle, and human operator. Close-ups of the sensor payloads are shown
in the insets.

knowledge only of its immediate neighbours - there is no
global knowledge of the network topology.

Previous approaches to robust decentralised data fusion
have included tracking position features provided by range
devices such as radar or laser [2], tracking artificial visual
features with known range [7], monitoring temperature [1] or
people movement [8] in an office environment. Nettletonet
al. showed that scalable decentralised state estimation with
Gaussian noise can be achieved in outdoor environments
using autonomous air vehicles observing features with known
dimensions [7]. Through the information (canonical) form
of a Gaussian, it was shown that local and communicated
information can be fused at any time and any order us-
ing additive information matrices. However, these additive
algorithms are only valid for Gaussian representations and
do not extend to general probabilistic distributions. Paskin
et al. also demonstrated a DDF framework using a general
algorithmic architecture applicable to many multi-sensorsit-
uations. They implemented a Mote network for temperature
sensing although only Gaussian noise was considered and a
tree topology over the network was enforced [1].

Ihler et al. demonstrated that non-parametric distributions
could be used for sensor-calibration in a network with non-
parametric belief propagation [9]. Although this algorithm
converges to the true state in a number of cases, it can
also result in overconfident estimates due to the fusion of



common information. Rosencrantzet al. also showed that
decentralised state estimation can be performed with non-
Gaussian representations where range and bearing observa-
tions from a laser were fused with a particle filter [2].

Unlike the above approaches, we concentrate on modelling
natural features at three levels:geometric, identity, and
appearance[10]. At the geometric level we have extended
previous decentralised research to include bearing only,
visual observations of natural features rather than range-
bearing. Gaussian mixtures were used to model the non-
Gaussian uncertainty, first demonstrated in tracking problems
by Alspach and Sorenson [11], [12]. Alspach also extended
these ideas to multi-target identification [13].

Observations of identity states (class labels), with corre-
sponding geometric observations, allowed human perceptual
information to be fused into the network. Probabilistic fu-
sion of human and robotic information sources has been
previously addressed only in theory or with non-probabilistic
human observations [14], [15], [16]. Identity could also be
inferred from appearance states which improved classifi-
cation and hence data association. Real-time classification
using non-Gaussian probabilistic, visual/appearance models
has recently proven to be accurate [17], [18], [19]. We
show that augmenting the geometric states of features with
these models increases the robustness of validation gating
for track-track association.

The following sections detail the algorithms and illus-
trate results from a live demonstration. Sections II and III
describe the decentralised non-Gaussian fusion algorithms
used in this work. Sec. IV describes the feature extraction
and appearance modelling of landmarks observed through a
monocular camera. Sec. V shows the addition of class labels
to the appearance model allowing human operators to input
information into the network. Finally results are shown in
Sec. VI with conclusion and future work in Sec. VII.

II. D ECENTRALISEDBAYESIAN ESTIMATION

The algorithmic structure in decentralised estimation is the
same for every node in the network and is outlined in Fig. 2.
Each sensor makes an observation over which a likelihood is
generated. Data association is then performed with existing
local tracks where either fusion or track initialisation takes
place. Information can then be communicated to other nodes
via the channel filter and subsequently assimilated.

The following sections describe the general Bayesian filter
so as to introduce notation and from which specific GMM
algorithms can be derived.

A. Local Filter

The recursive update after an observation is given by
Bayes theorem:

p(xk|Z
k) =

p(z = zk|xk)p(xk|Z
k−1)

p(zk|Z
k−1)

(1)

whereZ
k are observations of a statexk at timetk, p(z|xk)

is the likelihood model,p(xk|Z
k−1) is the prediction from
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Fig. 2. Flow chart of the operations performed in distributed estimation.

the posterior over the previous state, andZ
k = {zk,Zk−1}

is the set of observations from all nodes in the DDF network.
The local prediction step is given by the Chapman-

Kolmogorov equation:

p(xk|Z
k−1) =

∫

p(xk|xk−1)p(xk−1|Z
k−1,x0)dxk−1 (2)

wherep(xk|xk−1) is the transition probability density, and
p(xk−1|Z

k−1,x0) is the updated estimate from the previous
time step.

B. Node-to-Node Fusion

It can be shown that fusion of the raw correlated informa-
tion between nodesi andj is [20], [21]

p(x|Zi ∪ Zj) =
1

c

p(x|Zi)p(x|Zj)

p(x|Zi ∩ Zj)
(3)

whereZi(j) are all the observations available to nodei (j),
p(x|Zi ∪ Zj) is the posterior probability over the unknown
state given information from both nodes,p(x|Zi(j)) are
the posteriors based only on locally available information,
p(x|Zi ∩ Zj) is the information the two nodes have in
common, andc is a normalising constant.

Thus the problem of constructing the unionZi ∪ Zj ,
reduces to finding the common informationZi ∩ Zj and
is thekey to the decentralised communication problem. The
incorporation of redundant information in DDF systems may
lead to bias, over-confidence, and divergence in estimates.

III. G AUSSIAN M IXTURE MODEL BAYESIAN FILTER

A number of representations have previously been used
for multi-modal stochastic models in filtering and tracking.
These include particles [22], kernel density estimates [23],
and mixture models [11]. Although particle representations
are powerful non-Gaussian representations, they suffer from
the curse of dimensionality. Kernel density estimates also
require many components for accuracy in high dimensions.



In this work, we use Gaussian mixture models (Gaussian
sum approximations) which require fewer components for
accurate estimation but have the disadvantage of full covari-
ances needing to be specified. Additionally, GMMs provide
a basis for analytical solutions to the general Bayesian
filtering problem [11]. The following will briefly describe
the algorithms for DDF with GMMs.

A Gaussian mixture model is defined for a random variable
X as

p(x) =

N
∑

i=1

πiN (x|µi, Σi) (4)

wherex are the observations ofX, πi are positive weights
with the property

∑N
i=1 πi = 1, N (x|µi, Σi) is a Gaussian

probability density (also known as a Gaussian mixture com-
ponent) with meanµi and full covarianceΣi, andN is the
number of mixture components.

A. Local Filter

Substitution of GMMs into Bayes Theorem (Eq. 1) gives

p(xk|zk) = A
M
∑

i=1

πziNzi

N
∑

j=1

πxjNxj (5)

whereA = 1/p(zk|zk−1) is a normalising constant, theNz ’s
represent the likelihood distributionp(zk|xk), and theNx’s
represent the predictionp(xk|zk−1). Similarly for πz andπx.

Expanding Eq. 5 results inM × N terms, each which
involve a multiplication of two weighted Gaussians. Thus,
the posterior distribution is represented byM ×N weighted
Gaussians.

GMMs also allow an analytical solution to the Chapman-
Kolmogorov equation. Substituting GMMs into Eq. 2 results
in a convolution betweenM × N weighted Gaussians with
each term a Gaussian of the form [24]

πN
(

µa + µb, Σ
2
a + Σ2

b

)

(6)

where the subscripts denote the variables for the two Gaus-
sians andπ is a constant weighting term.

The multiplicative expansion in parameters requires a
component merging technique to keep the above operations
tractable. We use Salmond’s algorithm [25] which results in
relatively accurate estimates.

B. Fusion - Pairwise Component Covariance Intersect

A non-optimal solution for node-to-node fusion of Gaus-
sian representations is the Covariance Intersect (CI) filter
which conservatively combines the information in two in-
coming channels assuming that the correlation is unknown
[26]. Here, we use Gaussian mixture models (GMMs) and a
variant of the Covariance Intersect algorithm [27]. However,
as in the work of Ihleret al. [9] and Rosencrantzet al. [2]
divergent solutions are possible.

1) Covariance Intersect Filter:Consider two estimates
µa and µb with covariancesΣa and Σb respectively. The
CI algorithm computes an updated covariance matrix as a
convex combination of the two initial covariance matrices in
the form

Σ
−1
c = ωΣ

−1
a + (1 − ω)Σ−1

b (7)

Σ
−1
c µc = ωΣ

−1
a µa + (1 − ω)Σ−1

b µb (8)

where 0 ≤ ω ≤ 1 with ω computed so as to minimise a
chosen measure for the size of the covariance matrix.

The resultant estimate is based on all possible correlations
and thus removes the need for the division in Eq. 3.

2) GMM CI: An extension to the CI algorithm involves
a pairwise CI update between each of the Gaussian compo-
nents in the two mixtures that are to be fused. The weight
update for each component is given by

πc = απaπb (9)

where

α =
1

(2π)D/2 |Σω|
1/2

e−1/2(µa−µb)
T Σ−1

ω
(µa−µb) (10)

is the scaling constant resulting from the multiplication of
two Gaussians,D is the dimension of the space, andΣω =
Σa/ω + Σb/(1 − ω).

We have found that this update remains non-divergent
for all the practical scenarios we have encountered and is
always better than a straight multiplication in which the
common information is not accounted for at all. Although
this conservative behaviour is not guaranteed we hope that
in future work convergence bounds can be defined.

IV. FEATURE EXTRACTION AND MODELLING

Monocular vision sensors were used as the only robotic
information sources in our demonstrations. This resulted in
difficulties discriminating between landmarks due to overlap-
ping bearing-only observations. Thus, validation gating based
only on position information had a high likelihood of failing.
We show here that a visual representation of the landmarks
can be maintained in addition to a position representation
improving track-track association. The following sections
outline the feature extraction preprocessing stage and how
the features can be used to estimate position and appearance.

A. Feature Extraction

Feature extraction was performed with colour template
matching [28]. Off-line, 3-D template colour histograms
were created from manually selected11×11 image patches.
Online, each image was scanned for matching patches. A
threshold for the value of the Bhattacharyya coefficient [29]
was used to determine how closely a given patch resembled
the template. The left hand side of Fig. 3 illustrates the value
of the Bhattacharyya coffficient for a “tree” template and all
the patches in the image on the right hand side.

Contiguous patches above a given threshold were deemed
a landmark of which the centroid was assigned bearing and
elevation coordinates. The geometric states could then be



Fig. 3. Left: The value of the Bhattacharyya coefficient assigned to
each patch from the image on the right using a template pickedfrom
a tree (red indicates a value of 1 while blue indicates a valueof 0).
Right: An example image obtained from a UAV. The arrows indicate
the correspondence between the Bhattacharyya coefficient values and the
extracted patches marked with squares.

estimated using a bearing-only likelihood model [30]. The
model was approximated in Cartesian space with a GMM and
was learnt off-line using Expectation-Maximisation (EM)
[27]. Online observations only required rotation of the GMM
to the specific bearing and elevation coordinates which could
then be locally fused using the equations outlined in Sec. III.

B. Appearance Model

The colour histograms from the feature extraction also
doubled as appearance observationsz. Each histogram con-
tained93 bins (729 dimensions) representing the RGB in-
formation. The high dimensionality of these observations
required a compression step which could be achieved through
a number of dimensionality reduction algorithms including
principal components analysis (PCA) [31], multidimensional
scaling (MDS) [32], Locally Linear Embedding [33], Isomap
[34], and many variants. We chose Isomap as it preserves
the neighbourhood of points in the low dimensional mani-
fold and automatically estimates the number of dimensions
required to retain relevant information.

However, Isomap and indeed most nonlinear dimension-
ality reduction algorithms are inherently deterministic.They
do not provide a measure of the uncertainty of the underlying
statesx, from noisy high dimensional observations. In addi-
tion, all the original training data must be stored to compute
the embeddings for new observations. We overcome this by
using the results of Isomap to train a generative probabilistic
model which encapsulates the uncertainties inherent in the
inference of a low dimensional statex, from noisy high
dimensional observationsz.

The probabilistic model can be used to map inputs to
outputs and vice versa by computing the expected values
E[z|x] andE[x|z]. We define a joint distribution similar to
a mixture of factor analysers, commonly used in the machine
learning community to perform simultaneous clustering and
local dimensionality reduction [35]. The only differencesare
that the low dimensional variablex is observed, not hidden,
and the Gaussian distributionsp(x|s) have nonzero mean
vectorsνs, and full covariance matricesΣs. The graphical
model in Fig. 4 depicts the assumed dependencies. The
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Fig. 4. Graphical model depicting the dependencies in the joint probability
distribution for appearance.

discrete hidden variables introduced in the model physically
represents a specific neighbourhood on the manifold over
which a mixture component is representative. This repre-
sentation conveniently handles highly nonlinear manifolds
through the capability of modelling the local covariance
structure of the data in different areas of the manifold. It
can be trained with very large datasets and the computational
cost of inference is independent of the number of training
samples.

The following outlines the specific parameterisation for
the model:

p(z,x, s) = p(z|x, s)p(x|s)p(s) (11)

p(z|x, s) =
1

(2π)D/2|Ψs|1/2
×

e−
1

2
(z−Λsx−µs)

T Ψ−1

s
(z−Λsx−µs) (12)

p(x|s) =
1

(2π)
d

2 |Σs|
1

2

e−
1

2
(x−νs)

T Σ−1

s
(x−νs) (13)

whereµs and Ψs are the means and covariances of the
mixture describing the high dimensional space,νs and Σs

are their counterparts in the low dimensional space,Λs are
known as the loading matrices and model the transformation
between the two spaces,s ∈ {1, . . . , N} where N is the
number of components of the mixture.

Given the results of Isomap, the parameters for the joint
distributionp(z,x, s), can be learnt off-line using Expecta-
tion Maximisation (EM) [36], [37]. Note that learning with
both low and high dimensional datax and z, appears to
improve the solution compared to just high dimensional data
[38].

Once the model has been learnt, real-time inference can
be performed online. A threshold for a given probabilistic
distance measure (in our case the Bhattacharyya coefficient)
can then be used for validation gating.

V. HUMAN OPERATORS

Human operators are considered an integral part of the
sensor network. They can play several roles when interacting
with the network [10]. Here, we regard the operator as an
information source contributing both geometric and visual
observations [39]. Two methods for location entry were
used: 1) Operators entered observations on a graphical user
interface (GUI) displaying an aerial map obtained prior to
the actual demonstration and 2) by estimating the range and
bearing of a feature relative to their own position. Raw range
and bearing observations were converted using a human



sensor model learnt off-line and thus both location entry
methods resulted in a probabilistic estimate of the same form
as the robotic representation.

Entry of visual information ultimately influenced the infer-
ence in the joint probabilistic model. Visual information was
entered in the form of identity state observations represented
by a random variableo, as shown in Fig. 5. The sensor
model P (o|s) was specified manually [39]. Here we show
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Fig. 5. Graphical model with the additional identity observations.

a correspondence between mixture components and feature
identity leading to the interpretation of thes node as an
identity label. This enabled us to classify a subset of the
data a priori with human interpretable labels. Maximum
Likelihood could then be used to learn the parts of the model
with labelled data while EM could still be used for unlabelled
data. With the addition of identity labels, human operators
could input meaningful observations aiding inference for
appearance.

Figure 6 shows low-dimensional data points for outdoor
features from Isomap with the learnt covariances from the
above model. Each 729-dimensional patchz, was reduced to

White car component

Tree trunk component

Fig. 6. The low dimensional embedding from Isomap with the learnt
covariances from the probabilistic model. The data contained 12388 patches
from outdoor features. The Isomap residual also indicated that 3 dimensions
would be adequate for retaining the relevant information.

a 3-dimensional representationx as indicated by the residual
of Isomap. The number of components was chosen to be
27 with 17 of them manually assigned a label. Two of the
labelled components are shown in the figure.

VI. RESULTS

The algorithms were demonstrated using a four node
network with three of the platforms illustrated in Fig. 1.
Both vehicles were equipped with Global Positioning System
(GPS) and Inertial Measurement Unit (IMU) sensors in

addition to a single vision sensor. The two human operators
were able to input and receive information using tablet PCs
with attached hand-held GPS units. Physical communication
between nodes was achieved with standard IEEE 802.11b
wireless network adaptors using the UDP protocol. The sys-
tem architecture as a whole was developed using the Active
Sensor Network framework [40] while the software imple-
mentation of the system adopted the component paradigm of
the Orca robotics project1. This ensured a modular approach
to development and ease of software component interaction
and communication which is essential in such a system.
Decentralised communication and testing of various prob-
abilistic representations also required the development of
a low-level communication software library2 and a general
library for probabilistic algorithms3.

The experiments were performed at an outdoor test facility
over an area of a few square kilometres. The position of
each of the vehicles and the fused estimates at each of the
nodes could be monitored with an online GUI overlaying
a geo-referenced aerial image taken prior to the demonstra-
tion. A number of objects such as trees, sheds, and cars
were surveyed using differential GPS measurements allowing
comparisons to ground truth.

Each platform maintained a bank of decentralised, non-
Gaussian Bayesian filters for the features it observed, and
transmitted the information to all other platforms. The net
result was that each platform maintained a complete map of
all features observed by all nodes in the network. Multiple
observations of the same feature, possibly by different plat-
forms, resulted in an increasingly accurate estimate of the
feature location forall nodes.

A. Accuracy of Position Estimates

Fig. 7 illustrates GUI screenshots of a sequence of map
updates for observations of a tree from a ground vehicle.
The camera was mounted sideways so forward movement
automatically increased the baseline between observations.
As the vehicle moved past the tree, the updated estimate
increased in accuracy and converged to the true location of
the object (indicated by the white cross). Note that the label,
representing the component with the highest probability
inferred from the appearance model, also correctly identified
the object.

B. Improved Track-Track Association using Appearance

The ground vehicle shown in Fig. 1 circled around the
tree and the red car displayed in Fig. 8(a). Fig. 8 illustrates
the difficulty in track to track association when position
observations are the only source of information. As can
be seen in Fig 8(b), observations of the tree and the red
car overlap. Based on position information only, all the
observations were fused into one single estimate (Fig. 8(c)).
However, when the visual states of the tree and the car were
included, two different tracks were maintained (Fig. 8(d)).

1http://orca-robotics.sf.net
2http://crud.sf.net
3http://spasm.sf.net



Fig. 7. Surveyed differential GPS locations are marked as white crosses on the aerial photograph. Ellipses of the same colour are 2-D projections of
a Gaussian mixture representing the position estimate of a single feature. Labels indicate the component with the highest probability inferred from the
appearance model. The ellipses and labels combine to make upthe entire map. The red line represents the trajectory takenby the vehicle.

(a) (b) (c) (d)

Fig. 8. (a) The two landmarks: a tree and a red car. (b) bearingonly observations of these landmarks. (c) Position estimate of the two landmarks without
appearance discrimination. Note that only one track was initialised. (d) Position estimate with appearance discrimination. Two tracks were maintained
although the locations of the landmarks were very close. Theground vehicle is represented by a red rectangle and its trajectory indicated by the red curve.

Fig. 9. RHS: The belief of one of the nodes in the network. Eachset of coloured ellipses corresponds to a particular feature and the labels represent
the identity state with highest probability. The icons represent each of the different nodes in the network; UAV = air vehicle, GV = ground vehicle, HO =
human operator. LHS: the original aerial image with arrows highlighting a few of the correspondences with the belief of the node.



C. Decentralised Fusion Map

The map shown in Fig. 9 is a live screenshot of the belief
of one of the platforms after multiple nodes entered the
network. Each set of coloured ellipses with a corresponding
label represents a different feature. Qualitatively, it can be
seen that an accurate map with correct feature classification
was achieved.

VII. C ONCLUSION

We have shown decentralised state estimation with Gaus-
sian mixture models in combination with appearance models
to aid in validation gating for data association. The algo-
rithms were demonstrated on a network involving hetero-
geneous platforms in a large outdoor area. In the future we
hope to continue investigating conservative fusion techniques
for non-Gaussian representations and define non-divergent
bounds for these methods.
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