
C++ ExceptionsTim Bailey

C++ Threading

Tim Bailey



C++ ExceptionsTim Bailey

Introduction

• Very basic introduction to threads

• I do not discuss a thread API
• Easy to learn

• Use, eg., Boost.threads
• Standard thread API will be available soon

• The thread API is too low-level for thinking about 
multi-threaded programming

• Your program will be complicated and error-prone



C++ ExceptionsTim Bailey

What are Threads?

• Multiple simultaneous paths of execution
• Single processor; pre-emptive time slicing
• Multiple processors; true parallel processing

• Shared address space
• Threads can access the same pointers and 

objects



C++ ExceptionsTim Bailey

Why Threads?

• Some programs have a simpler, more natural 
design with threads

• Some programs are more responsive

• “Why?” is not what this talk is about



C++ ExceptionsTim Bailey

Essence of Multi-Threaded Design

• Threading is about communication
• Passing/sharing data between threads
• Race conditions
• Deadlocks

• Good design makes multi-threaded code look 
like single-threaded code
• Write code where you don’t have to think about 

threading issues



C++ ExceptionsTim Bailey

Shared Objects and Race Conditions

• Writing to a shared state 
• Non-atomic actions can cause tricky problems

• Complications, eg., cache
• See double checked locking debacle
http://www.cs.umd.edu/~pugh/java/memoryModel/

DoubleCheckedLocking.html

• Simple solution:
• Put mutexes around ALL accesses to shared 

objects

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html�
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html�


C++ ExceptionsTim Bailey

Mutexes and Locks

• A mutex is a shared object associated with 
shared data
• [see mutex.cpp, wrapping pthreads]

• A lock is a local object associated with a local 
critical section
• Lock and unlock a mutex around a code block 

that accesses the shared data
• Unlocking can be tricky

• Programmer forgetfulness
• Exceptions and resource release
• Solution RAII [see scopedlock.cpp]



C++ ExceptionsTim Bailey

Typical (Bad) Design

• Manual locking [see scopedlock.cpp]

• Problems
• Must remember to lock every time
• Must associate correct mutex with the data
• Threading is mingled throughout the code

• All code looks “multi-threaded” and is therefore 
coupled and complicated 
• Tricky thread-oriented debugging is not localised



C++ ExceptionsTim Bailey

Enforcing Shared Object Locking

• Monitor Object [see monitorobject.cpp]
• Non-intrusive internal locking
• Use to lock around individual member accesses
• Issue: multiple member accesses are not atomic

• Accessor Object [see sharedobject.cpp]
• Enforced external locking
• Use to lock around multiple member accesses



C++ ExceptionsTim Bailey

Condition Variables

• Condition variables
• Wait condition, allows a thread to block
• Signal from another thread unblocks waiting 

thread; the two threads are synchronised
• [see condition.cpp, wrapping pthreads]

• Condition variables are an essential component 
for building communication channels



C++ ExceptionsTim Bailey

Communication Channels

• Unidirectional channels
• Thread safety encapsulated within channel
• Permits localised thread debugging
• Interface looks like single-threaded code

• Channel has sender and receiver perspectives
• A thread sees only one endpoint

• Send endpoint, OR
• Receive endpoint

• Use proxy interfaces to enforce correct access
• [see channel.cpp]



C++ ExceptionsTim Bailey

Caveat: Memory Allocation

• Use of new invokes a global mutex
• Synchronises threads, degrades performance
• Worst if execution is parallel, not just time-sliced

• A problem for all heap-based allocation
• Advice:

• Consider using pre-allocated memory pools
• Use fixed-size channel buffers
• Avoid communicating objects whose 

constructors allocate dynamic memory, since
• Blocking channel makes one copy
• Buffering channel makes two copies



C++ ExceptionsTim Bailey

What Remains?

• Lots...
• Read-write locks, try locks, spin locks, timeouts
• Re-entrant functions; avoid global and static variables
• Deadlock prevention/detection
• Thread priorities and scheduling

• Priority inversion
• Patterns

• Producer-Consumer
• Thread pools
• Active objects with Futures
• Publish-Subscriber

• Thread lifetimes
• Thread termination; graceful
• Detached, non-detached, joining
• Threads and exceptions

• Channel varieties
• Blocking, buffering, one-to-many, many-to-one

• Name services
• IDs of active threads, classes and objects
• Dynamically connecting/disconnecting channels at runtime
• Connection requests/notification



C++ ExceptionsTim Bailey

Conclusion

• Isolate thread-aware code
• Localise thread debugging to a few classes

• Majority of code communicates through high-level 
interfaces
• Interfaces encapsulate thread safety
• Most code is written as single threaded (ie., thread-

oblivious)

• Simplicity is key


	C++ Threading
	Introduction
	What are Threads?
	Why Threads?
	Essence of Multi-Threaded Design
	Shared Objects and Race Conditions
	Mutexes and Locks
	Typical (Bad) Design
	Enforcing Shared Object Locking
	Condition Variables
	Communication Channels
	Caveat: Memory Allocation
	What Remains?
	Conclusion

