

Wireless Communication
 for

High Speed Vehicle Project

Fayad Y. Tohme

This thesis has been undertaken as part of the course work required for the degree of

Bachelor of Engineering in Mechanical Engineering (Mechatronics)

Australian Centre for Field Robotics (ACFR)
School of Aerospace, Mechanical and Mechatronic

Engineering
The University of Sydney

November 2002

Declaration:

The following is a list of work I carried out as part of the development of an
autonomous road following system:

�� I declare that the work, ideas & codes in the following thesis are mine unless

they are quoted.

�� I declare that the Wireless communication package is chosen, bought and

implemented by me.

�� I designed and implemented the software for the Ute’s computer that reads

the Hyperkernel memory, receive messages and send messages through the

wireless network.

�� I designed and implemented the software for the Operator’s computer that

interface with the operator, send messages, and receive messages from the

wireless network and save data into the hard disk.

�� I designed, built and implemented the structure of the electromagnetic clutch

of the steering wheel.

�� I designed and build the circuit for the switching mechanism between the

Automatic and manual status of the car control.

Signed

Eduardo Nebot
(Supervisor)

Abstract:
The Thesis is a part of the HSV Project at the Australian Centre for Field Robotic at
the University of Sydney. The aim was to develop a wireless communication
package to communicate between the Ute’s onboard computer and the operator’s
computer.

First all the sensors and actuators were studied and discussed, and all the important
data that the operator would be interested in was analysed and specified. The
wireless communication system was then chosen and developed.

The band used was 2.4 GHz, using the IEEE 802.11b system by connecting the
computers peek-to-peek. The wireless hardware package was carefully chosen such
as: the Ute’s antenna, the operator’s antenna, the wireless communication Ethernet
card and the Ethernet converter.

The Communication library used was Msg_bus library where the connection was
easily attached enabling the messages to be sent one at the time. Two main softwares
were developed. The first software developed for the Ute reads all the sensors data
from the Hyperkernel shared memory and sends it to the operator’s computer. The
second software, the operator software communicates with the Ute, asks for specific
data and saves it into text files.

Finally, safety procedures for anyone planning to use the Ute were developed for
people to follow while doing any sort of testing at any time.

Acknowledgments:

Firstly, I would like to thank my supervisor, Ass. Prof. Eduardo Nebot, for his help

and guidance in every stage of this thesis. His support and keen interest in my

progress made this thesis possible.

I also want to express my appreciation to the entire HSV team – undergraduates and

post graduates – for the smooth team work conducted, in particular, Jose, Juan &

Trevor.

Lastly, I would like to offer my deepest gratitude and acknowledgement to my

family and friends for their support & encouragement, in particular Jihan &Toufic.

“To Mum & Dad”
Thanks…

Abbreviations:
ACFR: Australian Centre for Field Robotic.
BPSK: Binary Phase Shift Keying.
CCK: Complementary Code Keying.
CCA: Clear Channel Assessment.
DSSS: Direct Sequence Spread Spectrum.
EIRP: equivalent isotropic radiated power.
FHSS: Frequency Hopping Spread Spectrum.
HiperLAN: High Performance European Radio LAN.
HSV: High Speed Vehicle.
INS: Inertial Navigation System.
IP: Internet protocol.
GPS: Global Positioning System.
LAN: Local Area Network.
MAC: Medium Access Control.
OFDM: Orthogonal Frequency Digital Multiplexing.
PC: Personal Computer.
PLCP: Physical Layer Convergence Procedure.
PMD: Physical Medium Dependent.
PCI: Protocol Control Information.
PDU: Protocol Data Unit.
PHY: Physical Layer.
QPSK: Quadrature Phase Shift Keying.
RF: Radio Frequency.
SDU: Service Data Unit.
TCP: Transmission Control Protocol.
WECAL: Wireless Ethernet Compatibility Alliance.
WEP: Wired Equivalent Privacy.
Wi-Fi: Wireless Fidelity.
WLAN: Wireless Local Area Network.
WPAN: Wireless Personal Area Networks.
VPN: Virtual Private Networks.

Content Page:
DECLARATION: ___ I

ABSTRACT:___ II

ACKNOWLEDGMENTS: ___III

CONTENT PAGE:__VI

LIST OF TABLES: ___IX

LIST OF FIGURES: __IX

CHAPTER 1 __ 1

1 INTRODUCTION __ 1

1.1 HIGH SPEED VEHICLE (HSV) PROJECT BACKGROUND____________________________ 1
1.2 HSV SENSORS & ACTUATORS__ 2
1.3 HSV SENSORS __ 3

1.3.1 Differential GPS Unit__ 3
1.3.2 Inertial Navigation System __ 5
1.3.3 SICK Bearing Laser ___ 6
1.3.4 LVDT __ 7
1.3.5 Wheel Encoder ___ 7
1.3.6 Compass __ 8
1.3.7 Throttle Potentiometer ___ 8
1.3.8 Brake Potentiometer___ 9

1.4 ACTUATOR & CONTROLLER ___ 9
1.4.1 Steering Actuator & Controllers ___ 9
1.4.2 Throttle Actuator & Control__ 11
1.4.3 Brake Actuator & Control ___ 12
1.4.4 Data Transfer ___ 13

CHAPTER 2 ___ 14

2 WIRELESS COMMUNICATIONS: __ 14

2.1 INTRODUCTION __ 14
2.1.1 Bluetooth __ 14
2.1.2 WDCT___ 15

2.1.3 HomeRF ___ 15
2.1.4 802.11b__ 15
2.1.5 802.11a__ 16
2.1.6 HiperLAN __ 16

2.2 IEEE 802.11.B___ 16
2.2.1 Terminology: ___ 17
2.2.2 Features: __ 18
2.2.3 Implementations: __ 18

2.3 WIRELESS LOCAL AREA NETWORK ___ 19
2.4 WLAN CONFIGURATION ___ 20

2.4.1 Peer-to-peer (ad hoc mode) __ 20
2.4.2 Client/server (infrastructure networking) _________________________________ 21
2.4.3 Selection ___ 22

2.5 AIM FOR THE WIRELESS COMMUNICATION ___________________________________ 22

CHAPTER 3 ___ 23

3 HARDWARE ___ 23

3.1 STRUCTURE ___ 23
3.2 ANTENNAS__ 24

3.2.1 Gaining coverage range: __ 24
3.2.2 Positioning antennas:___ 24

3.3 UTE ANTENNA ___ 25
3.3.1 Specifications ___ 25

3.4 OPERATOR ANTENNA ___ 25
3.4.1 Specifications ___ 26

3.5 WIRELESS NETWORK CARD___ 26
3.5.1 Silver Label Cards Features__ 26
3.5.2 Compatibility ___ 27

3.6 ETHERNET CONVERTER __ 28
3.7 DATA PROTECTION AND SECURITY ___ 28
3.8 RANGE DETECTION:___ 29
3.9 RANGE TROUBLESHOOTING: __ 30

CHAPTER 4 ___ 32

4 LIBRARY FUNCTION ___ 32

4.1 BACKGROUND: __ 32
4.2 MESSAGE BUS FUNCTIONS: ___ 32

4.2.1 Attached: __ 33

4.2.2 Detach:__ 33
4.2.3 Sending: ___ 34
4.2.4 Receiving:__ 35

4.3 URGENT MESSAGES ___ 36

CHAPTER 5 ___ 38

5 SOFTWARE DEVELOPMENT __ 38

5.1 INTRODUCTION __ 38
5.2 REQUIREMENTS __ 39
5.3 DESIGN __ 40

5.3.1 The Ute’s Software ___ 41
5.3.2 The Operator’s Software __ 43

5.4 CODING __ 45
5.4.1 The Ute’s code __ 45
5.4.2 The Operator’s Software __ 48

5.5 TESTING & MAINTENANCE ___ 54

CHAPTER 6 ___ 56

6 SAFETY ___ 56

6.1 AIMS __ 56
6.2 OCCUPATIONAL HEALTH AND SAFETY POLICY ________________________________ 56
6.3 HSV PROJECT SAFETY __ 57
6.4 SAFETY PROCEDURES ___ 57
6.5 PROCEDURES: WHEN ACCIDENTS HAPPEN ___________________________________ 58
6.6 WAVELAN AND YOUR HEALTH ___ 59
6.7 CONCLUSION __ 60

CHAPTER 7 ___ 61

7 CONCLUSION __ 61

7.1 FUTURE WORK & IMPLEMENTATION:__ 61

REFERENCES: __ 63

APPENDIX A: ___ 64

List of Tables:
Table 3-1: Range Detection .. 30
Table 5-1: Sensors Timing .. 39

List of Figures:
Figure 1-1: Differential GPS __ 4
Figure 1-2: SICK Laser __ 6
Figure 1-3: Wheel Encoder ___ 7
Figure 1-4: Steering Actuator ___ 9
Figure 1-5: System Control __ 11
Figure 2-0-1: Peer-to-Peer __ 20
Figure 2-0-2: Software Access Point ___ 21
Figure 3-0-1: Wireless Communication Hardware ______________________________________ 23
Figure 3-0-2: Orinoco Wireless Ethernet Card ___ 27
Figure 3-3: Ethernet Converter Hardware __ 28
Figure 5-1: Software Development Stages___ 38
Figure 5-2: Main Software Architecture __ 40
Figure 5-3: Ute's Software Architecture __ 42
Figure 5-4: Operator's Software Architecture __ 44

Chapter 1 Introduction 1

Chapter 1

1 Introduction

1.1 High Speed Vehicle (HSV) Project background
The High Speed Vehicle (HSV) project has been a successful ongoing project

conducted by the Australian Centre for Field Robotics (ACFR) since 1997. The

primary objective of past undergraduate students and researchers in the project has

been the development of navigation and control algorithms to enable autonomously

autonomous operations of land vehicle operating in unknown environments. The

experimental prototype consists of a Holden S-series Commodore Utility car that is

retrofitted with a large number of sensors, actuators, data logging and control

system.

The aim of the HSV project is to develop technologies for the automation of a land

vehicle operating at ‘high speed’ (speed up to 90 Km/h) in a variety of ‘real’

environments. The Project is funded by ACFR and CMTE.

The ‘high speed’ element increases system complexity, requiring the vehicle to look

further ahead. This necessitates the consideration of a multitude of future motion

outcomes - all of which need to be implemented within a software architecture

possessing multiple layers of redundancy and ‘safe’ failure modes.

http://www.acfr.usyd.edu.au/

Chapter 1 Introduction 2

To make such systems a reality, the HSV project researches all aspects of automated

vehicle navigation. This process can be broken down into four steps:

1) Perceiving and modelling the environment.

2) Localising the vehicle within its environment.

3) Planning and deciding the vehicle’s desired motion.

4) Executing the vehicle’s desired motion.

Developing robust and reliable control systems required by an autonomous vehicle

for high speed operation (in often unstructured, real-world environments) is a

challenging task. Techniques and algorithms implemented on low speed (often

indoor) mobile robots working in static, structured environments are often

inappropriate for a high speed autonomous vehicle. Research in new sensors and

perception algorithm is essential for reliable navigation in all terrain applications.

The ultimate goal of this project is to be able to design a system capable of

determining the location of the vehicle in unstructured and unknown environments

and to be able to control it to perform a desired path with cm accuracy.

1.2 HSV Sensors & Actuators
Research and development work is tested, debugged, evaluated and implemented on

the HSV project’s test vehicle, a mid-1990’s Holden utility (‘Ute’), retorted with the

computing, sensing and actuation hardware necessary for complete automation. A

PC (Pentium II, 400MHz, 64MB RAM) running the MS Windows NT (with the

Hyperkernel real-time extension) and QNX (real-time) operating system is located

in the Ute's tray, along with data acquisition equipment (such as an A/D converter)

for interfacing between the sensors and actuators. Inside the cabin, on the

passenger’s side, a screen monitor has been mounted, to facilitate monitoring of

system performance during testing.

A substantial suite of sensors is currently available for use on the ‘Ute’, providing

several potential localisation and environmental sensing options and configurations.

The sensors implemented are outlined as follows:

Differential GPS Unit, Inertia Navigation System (INS), SICK Bearing Laser,

http://www.acfr.usyd.edu.au/projects/research/ute/hard_GPS.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_INS.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Laser.html

Chapter 1 Introduction 3

LVDT, Wheel Encoder, MM-Radar, Compass, Panoramic Vision, Throttle

Potentiometer, Brake Potentiometer.

Three actuation systems (for steering, throttle and brake) are also in place, allowing

the Ute to operate under complete autonomous control. A brief description of the

configuration of these three systems is now given:

�� Steering Actuator & Control: a DC motor, mounted inside the driver’s foot-

well, turns the steering column through a worm reduction gearbox and an

electromagnetic clutch

�� Throttle Actuator & Control: a linear actuator controls the displacement of

the carburettor butterfly valve (which determines engine power output), via a

guide cable.

�� Brake Actuator & Control: a second linear actuator (mounted under the

driver’s seat) controls the position of the brake pedal directly. The physical

connection between the pedal and the actuator is via two cables, threaded

through a bracket in the front of the foot-well.

1.3 HSV Sensors
A substantial suite of sensors is currently available for use on the ‘Ute’, these

providing several potential localization and environmental sensing options and

configurations. The following part of this chapter will list and describe the sensors

used in the Ute. Furthermore, the wirelessly transferred data structures produced by

each sensor are also provided with a brief explanation.

1.3.1 Differential GPS Unit
The Global Positioning System or GPS is a unit which can provide position and

velocity information. Using a series of satellites orbiting the Earth, in known orbits,

the unit can determine where and what heading the unit is travelling. The system on

the HSV is called a differential GPS, which will return higher accuracy to the data

received. A base station is set up at a known geographical location, and taking the

GPS information received at this station, an estimate of the GPS error can be made.

This error is then sent, via radio, to the HSV computer which then removes the

estimated error from the GPS information gathered from the GPS unit located on it.

http://www.acfr.usyd.edu.au/projects/research/ute/hard_LVDT.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_encoder.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_encoder.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Laser.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Compass.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Panoramic.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_throttle_pot.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_throttle_pot.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Brake_pot.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Steering.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Throttle.html
http://www.acfr.usyd.edu.au/projects/research/ute/hard_Brake.html

Chapter 1 Introduction 4

The information gathered from such a system provides a global position in the

North, East and Down (vertical elevation), as well as the unit’s velocities in these

frames. These are the main six data values used, but other information on the GPS

system is also provided, such as the number of satellites transmitting to the unit and

the variance of the individual signals.

Figure 1-1: Differential GPS

The wirelessly transferred data:

timestamp; // timestamp (in milliseconds) using GPS

latitude; // latitude (in degrees)

longitude; // longitude (in degrees)

altitude; // altitude (in metres)

ttcourse; // track/true course (in degrees)

speedog; // speed over ground (in knots)

vspeed; // vertical speed (metres/sec)

sigmaLati; // Sigma latitude

sigmaLongi; // Sigma longitude

sigmaAlti; // Sigma altitude

mode; // GPS mode

satellites; // number of satellites

Chapter 1 Introduction 5

1.3.2 Inertial Navigation System
INS Stands for "Inertial Navigation System". It is a black box (literally!) containing

a combo of sensors. It consists of gyros, accelerometers and inclinometers arranged

along 3 perpendicular axes.

�� Gyros measure angular velocity, so we can measure how fast the Ute is

turning and tilting.

�� Accelerometers measure acceleration. This lets us know how fast the car is

accelerating or decelerating in any direction.

�� Inclinometers measure inclination. This lets us know if the Ute is tilting or

banking.

This provides data in all six degrees of freedom: acceleration and angular velocity in

all three axes, with bank and elevation angles from the pendulum gyroscopes. This is

used to provide dead-reckoning estimation of the HSV’s position, through

integration of the acceleration and angular velocity to provide position and heading.

The wirelessly transferred data:

timestamp; // timestamp (in milliseconds)

bank; // bank

elev; // elevation

ax; // acceleration along x-axis

ay; // acceleration along y-axis

az; // acceleration along z-axis

gx; // angular acc. about x-axis

gy; // angular acc. about y-axis

gz; // angular acc. about z-axis

Chapter 1 Introduction 6

1.3.3 SICK Bearing Laser
To obtain a picture of the environment around the HSV, a bearing laser was situated

at the front of the HSV. The basis of the bearing laser is that it emits a single infra-

red laser pulse which is reflected back from any object within its vicinity. The time

that the beam takes to return to the unit is measured, and then using the speed of

light, the distance that the object is away from the bearing laser can be calculated.

An image of the environment is then constructed by rotating the laser and taking

samples at known angular intervals.

Figure 1-2: SICK Laser

For this SICK Bearing laser range samples are taken at every 0.5°, for a range of

180° and a distance of up to 80m. The data given for each sweep of the sensor is in

the format of a range reading for every sample taken, thus a total of 361 range

readings. This model also provides the intensity of the return signal, which is

presented in the same format. This feature is useful for identifying markers and

reflective objects.

The wirelessly transferred data:

timestamp; // timestamp (in milliseconds)

range[i]; //Laser Range 180o for 360 section

Chapter 1 Introduction 7

1.3.4 LVDT
An LVDT is a measurement device which uses the electromagnetic force that is

induced in the movement of a ferrous core through two electromagnetic coils. The

LVDT uses this principle to measure linear movement, by attaching the two ends to

the linear distance needed to be measured. For the HSV, this has been attached to the

steering system of the Ute, and returns a value of the angle the vehicle’s steering has

shifted.

To prevent any physical damage to the steering hardware, a certain range of steering

angle has been given as a default so that the actuators are not forced to drive the

steering rack past its physical limits.

The wirelessly transferred data:

Steering ; // Steering Sensor LVDT Value
real_steering_output; // The Real Steering Output (Calculated)

1.3.5 Wheel Encoder
The ROD-430 wheel encoder is incremental rotary velocity encoders from

Heidenhain. The encoders operate on the principle of photo electrically scanning

very fine grating with a line counts between 50 to 5000. The shaft attaching to the

wheel encoders can oscillate up to 12 000 rpm. Output signals for this particular

model are HTL square-wave signals, therefore incorporating a circuit which

digitizes sinusoidal scanning signals, providing two 90 deg phase-shifted pulse

trains and a reference pulse. The encoder is powered by the 12 Vdc from the fuse

box.

Figure 1-3: Wheel Encoder

The wirelessly transferred data:

Counts; // The Potentiometer counting value

http://www.heidenhain.de/

Chapter 1 Introduction 8

1.3.6 Compass
An alternative source of vehicle heading information is measured relative to

magnetic north. The compass used was TCM2. The TCM2's elimination of a

mechanical gimbal is unique among electronic compasses. All compasses must be

referenced to level in order to be accurate, so instead of using a clumsy universal

joint or fluid bath to hold its sensors level, the TCM2 uses a highly accurate

inclinometer (tilt sensor) to allow the microprocessor to mathematically correct for

tilt. This electronic gimbaling eliminates moving parts and provides more

information about the environment: pitch and roll angles and three dimensional

magnetic field measurements in addition to compass output. This extra data allows

the TCM2 to provide greater accuracy in the field by calibrating for distortion fields

in all tilt orientations, providing an alarm when local magnetic anomalies are

present, and giving out-of-range warnings when the unit is being tilted too far.

The wirelessly transferred data:

timestampB ; // timestamp (in milliseconds)

Heading; // latitude (in degrees)

Pitch; // longitude (in degrees)

Roll; // altitude (in metres)

1.3.7 Throttle Potentiometer
For throttle control, the feedback of the throttle position is obtained from a

potentiometer that was built into the linear actuator. The potentiometer consists of a

voltage divider where the potentiometer output wiper moves with the actuator rod.

the potentiometer reads from 1000 ohms to 11000 ohms and its output voltage range

is given by the two voltages (Vpot- & Vpot+) applied at the extremities of the

potentiometer resistor. The voltages applied at the two extremities are (-8.6V &

+8.6V) and therefore the voltage range of the potentiometer is (-8.6V & +8.6V).

The throttle moves with the actuator rod until the former reaches either of its

minimum or maximum positions. Therefore, in the active region, i.e. the region

where the throttle moves with the actuator rod, the distance moved by the actuator

rod is also the distance moved by the throttle & therefore the voltage reading from

the potentiometer is also proportional to the throttle position.

Chapter 1 Introduction 9

The wirelessly transferred data:

Accelerator; // the Acceleration Sensor Value

1.3.8 Brake Potentiometer
For throttle control, the feedback of the throttle position is obtained from a

potentiometer that was built into the linear actuator. The potentiometer consists of a

voltage divider where the potentiometer output wiper moves with the actuator rod.

The potentiometer reads from 0 ohms to 1000 ohms and its output voltage range are

given by the two voltages (Vpot- & Vpot+) applied at the extremities of the

potentiometer resistor. The voltages applied at the two extremities are (-8.6V &

+8.6V) and therefore the voltage range of the potentiometer is (-8.6V & +8.6V). The

Brake Pedal moves with the actuator rod until the former reaches either of its

minimum or maximum positions.

The wirelessly transferred data:

Brake; // The Brake Sensor Value

1.4 Actuator & Controller

1.4.1 Steering Actuator & Controllers
The steering in the HSV can be actuated in two ways: Manual or Automatic. A DC

motor is used to drive through a worm reduction gearbox onto the steering

mechanism to be able to turn left and right at a variable speed.

Figure 1-4: Steering Actuator

Components:
Motor:

Power: 120 W

Voltage: 24 V

Current: 5A

Rated Speed: 2000 rpm (209 rad/s)

Chain

Clutch

Worm
Gearbox

DC Motor

Gearbox:

Type: Worm Reduction

Rotation: 90o

Chapter 1 Introduction 10

Ratio: 40:1

Efficiency: 90% (not accurate)

Torque:

Torque Required: 8 Nm

Motor Torque = Power / Rated Speed = P / W = 120/209 = 0.5742 Nm

Torque Generated by the Gearbox = Efficiency * Motor Torque * Ratio

 = 0.9 * 0.5742 * 40 = 20.699 Nm

Therefore the Motor / Gearbox will generate enough torque for the steering.

Clutch:

The clutch that is used is a Lenze 10 Nm electromagnetic clutch. An electromagnetic

clutch was used to be able to switch the car using one single button from

autonomous mode to manual mode

Engagement:

Electromechanical clutches operate via an electric actuation, but transmit torque

mechanically. When the clutch is required to actuate, voltage/current is applied to

the clutch coil. The coil becomes an electromagnet and produces magnetic lines of

flux. This flux is then transferred through the small air gap between the field and the

rotor. The rotor portion of the clutch becomes magnetized and sets up a magnetic

loop that attracts the armature. The armature is pulled against the rotor and a

frictional force is applied at contact. Within a relatively short time the load is

accelerated to match the speed of the rotor, thereby engaging the armature and the

output hub of the clutch. In most instances, the rotor is constantly rotating with the

input all the time.

Disengagement:

When current/voltage is released from the clutch, the armature is free to turn with

the shaft. In most designs, springs hold the armature away from the rotor surface

when power is released; creating a small space that enables the two parts to rotate.

System Control
The LVDT reads the position of the steering rack and a voltage signal is taken as the

feedback value. The error between this value and the set point is evaluated and the

control algorithm determines a new output for the steering actuator.

Chapter 1 Introduction 11

Figure 1-5: System Control

LVDT

M

O

T

O

R

R

Power
Amp Gain

+ -
 Desired
Position

Amplifier:

The DC motor controller used is a 25A series Advanced Motion Controls DC Brush

Servo Amplifier. This motor controller is capable of outputting the required +/-

24VDC at currents up to 30 A using industry standards +/- 5V control signals. This

controller is used in closed loop control applications for position and velocity

control.

Actuation:

By changing the Voltage input to the motor from -24 to + 24 V, we will be able to

control the speed and the orientation of the Motor. The variable voltage will be

calculated by multiplying the error by the Kp from the PID controller.

1.4.2 Throttle Actuator & Control

Actuator:

The throttle actuator selected is a linear actuator driven by a 24V 1.25A (max

current) DC motor purchased from "Linear Bearings" in NSW. The model of the

linear actuator is quoted as LA12.3. It has a maximum load of 200N, a maximum

speed of 48mm/s and a stroke length of 100mm. This actuator was selected because

it was the fastest linear actuator found which satisfied the following requirements:

�� Powered by 24 VDC

�� Stroke length > 45mm (measured maximum displacement of throttle)

�� Maximum load > 100N (measured maximum force while displacing throttle)

Chapter 1 Introduction 12

Control Mechanical System:

For throttle control, the mechanical system consists mainly of a linear actuator and

guided cables (the same cables used to link the accelerator pedal & throttle). When

the actuator rod reacts, it pulls the cable along with it. This increases the extent at

which the throttle valve is opened and hence increases the acceleration of the

vehicle. As the actuator rod extends, the cable tension reduces and slackens,

allowing the returning spring at the throttle to return towards its original

(undisplaced) position. This reduces the throttle valve opening and hence reduces

the acceleration of the vehicle.

1.4.3 Brake Actuator & Control

Actuator:

The throttle actuator selected is a linear actuator driven by a 24V 6A (max current)

DC motor purchased from "Linear Bearings" in NSW. The model of the linear

actuator is quoted as LA30.3. It has a maximum load of 1500N, a maximum speed

of 42mm/s and a stroke length of 150mm. This actuator was selected because it was

the fastest linear actuator found which satisfied the following requirements:

�� Powered by 24 VDC

�� Stroke length > 100mm (measured maximum displacement of brake pedal)

�� Maximum load > 500N (measured maximum force while displacing brake

pedal)

Control Mechanical System:

For brake control, the mechanical system consists mainly of a linear actuator and

guided cables (the same cables used to link the accelerator pedal & throttle). When

the actuator rod retracts, it pulls the cable along with it, thereby pulling the brake

pedal further which causes an increase in the braking force on the vehicle. As the

actuator rod extends, the restoring spring at the brake pedal restores the brake pedal

towards the undisplaced position thereby reducing the braking force on the vehicle.

Chapter 1 Introduction 13

1.4.4 Data Transfer
The wirelessly transferred data for the PID control of the three actuators (such as Kp,

Kd, Ki, Starting point…) are described in the following part:

PID_A.Kp;
PID_A.Ki;
PID_A.Kd;
PID_A.SeMin;
PID_A.SeMax;
PID_A.yMin;
PID_A.yMax;
PID_A.spoint;
SteeringControlMode;
manual_steering;

Chapter 2 Wireless Communications: 14

Chapter 2

2 Wireless Communications:

2.1 Introduction
Wireless communications persist to encapsulate exponential growth in the cellular

telephony, wireless networking and internet territories. The number of wireless

subscribers worldwide has transcended from 425 million in 1999 to 953 million in

late 2002. At present, two types of wireless standards are gaining tremendous

industry share and interest due to their operative functionalities and characteristics,

namely the Bluetooth system and the IEEE 802.11 system. It is important to note

however, that a diversity of other wireless systems such as WDCT, Hiperlan/21 and

HomeRF2 also exist and have a small piece of the marketplace. The IEEE 802.11b

system was used for the Wireless networking between the operator and the Ute

onboard computer.

2.1.1 Bluetooth
Bluetooth is an open wireless standard which utilizes the unlicensed 2.4 GHz

Industrial-Scientific-Medical (ISM) band for short distance transmissions. At a

maximum data rate of 1 Mbps, it transfers voice and data wirelessly in Wireless

Personal Area Networks (WPANs) using Frequency Hopping Spread Spectrum

(FHSS) modulation scheme. Bluetooth is backed by the Bluetooth Special Interest

Group (SIG), which has support from industry leaders including Motorola, IBM,

Intel, Nokia, Toshiba, Ericsson, and 3Com. (Enos, L. 2000)

http://www.bluetooth.com/

Chapter 2 Wireless Communications: 15

2.1.2 WDCT
The DECT (Digital Enhanced Cordless Telecommunication) standard which

originated as a European initiative was not adopted as a worldwide wireless

telecommunications standard. Following years of success with DECT in Europe,

Africa and South America, the WDCT (Worldwide Digital Cordless

Telecommunications) standard was specifically developed for the North American

market in 1998. Operating in the 2.4 GHz frequency band, WDCT has adopted the

FHSS modulation scheme with a 1,000-foot transmission range and voice quality

that is comparable to fixed networks. (Enos, L. 2000)

2.1.3 HomeRF
HomeRF is a wireless technology that combines the voice protocol from DECT with

the data transfer technique in 802.11b. It operates in the 2.4 GHz frequency band at

10 Mbps peak data rate, providing a range of up to 150 feet while utilizing the FHSS

frequency modulation method. The HomeRF Working Group Inc. (HRFWG) was

formed to ensure the interoperability of wireless devices in distributing voice, data

and streaming media in consumer environments. Key members include: Intel,

Motorola, Compaq and Siemens. (Enos, L. 2000)

2.1.4 802.11b
The 802.11b standard was established by the Institute of Electrical and Electronic

Engineers (IEEE), while the Wireless Compatibility Ethernet Alliance (WECA)

ensures that all 802.11b products are interoperable. 802.11b, also known as Wi-Fi™,

operates at 2.4 GHz with a maximum bandwidth of 11 Mbps while 802.11b WLANs

provide ranges up to 300 feet. Unlike other wireless standards in the 2.4 GHz

frequency band, 802.11b has adopted the Direct Sequence Spread Spectrum (DSSS)

frequency modulation scheme. Major WECA members include Cisco, Lucent and

Nokia.

http://www.homerf.org/
http://www.wirelessethernet.com/

Chapter 2 Wireless Communications: 16

2.1.5 802.11a
802.11a is a wireless standard that operates in the 5.15 ~ 5.35 GHz and 5.725 ~

5.825 GHz frequency bands. 802.11a was developed by the IEEE as a

complementary technology to 802.11b under WECA. To achieve a 54 Mbps peak

transmission rate, 802.11a uses Orthogonal Frequency Digital Multiplexing

(OFDM) modulation scheme. 802.11a WLANs can transmit as far as 400 feet.

2.1.6 HiperLAN
HiperLAN (High Performance European Radio LAN) technology, which was

developed by the European Telecommunications Standard Institute, operates in the

5.15 ~ 5.25 GHz and 5.470 ~ 5.725 GHz frequency bands with QoS support. With a

peak data rate of 54 Mbps, HiperLAN also utilizes the OFDM frequency modulation

method for data transmissions. Like 802.11a, HiperLAN is capable of achieving a

400-foot transmission range. An open forum, HiperLAN2, was established to be a

global standard with complete interoperability of high-speed wireless LAN products.

Key members include Sony, Nortel Networks, Nokia, and STMicroelectronics.

(Pahlavan, K. 1995)

2.2 IEEE 802.11.b
The IEEE 802.11.b was the wireless system used in the project because it is the most

convenient, the cheapest, and the easiest to implement, and it was available. The

IEEE 802.11.b standard specifies a 2.4 GHz operating frequency with data rates of 1

and 2 Mbps using either direct sequence (DSSS) or frequency hopping spread

spectrum (FHSS). IEEE 802.11b data is encoded using DSSS (Direct Sequence

Spread Spectrum) technology. DSSS works by taking a data stream of zeros and

ones and modulating it with a second pattern, the chipping sequence.

In 802.11, that sequence is known as the Barker code, which is an 11-bit sequence

(10110111000) that has certain mathematical properties making it ideal for

modulating radio waves. The basic data stream XOR’d with the Barker code

generates a series of data objects called chips. Each bit is "encoded" by the 11 bit

Barker code, and each group of 11 chips encodes one bit of data.

http://www.standards.ieee.org/
http://www.hiperlan2.com/

Chapter 2 Wireless Communications: 17

The CCK (Complementary Code Keying) achieves 11 Mbps. Rather than using the

Barker code, CCK uses a series of codes called Complementary Sequences. Because

there are 64 unique code words that can be used to encode the signal, up to 6 bits can

be represented by any one particular code word (instead of the 1 bit represented by a

Barker symbol).

The wireless radio generates a 2.4 GHz carrier wave (2.4 to 2.483 GHz) and

modulates that wave using a variety of techniques. For 1 Mbps transmission, BPSK

(Binary Phase Shift Keying) is used (one phase shift for each bit). To accomplish 2

Mbps transmission, QPSK (Quadrature Phase Shift Keying) is used. QPSK uses four

rotations (0, 90, 180 and 270 degrees) to encode 2 bits of information in the same

space as BPSK encodes 1. The trade-off is increase power or decrease range to

maintain signal quality. Because the FCC regulates output power of portable radios

to 1 watt EIRP (equivalent isotropic radiated power), range is the only remaining

factor that can change. On 802.11 devices, as the transceiver moves away from the

radio, the radio adapts and uses a less complex (and slower) encoding mechanism to

send data. (Gast, M. 2002)

2.2.1 Terminology:
The MAC layer communicates with the PLCP via specific primitives through a PHY

service access point. When the MAC layer instructs, the PLCP prepares MPDUs for

transmission. The PLCP also delivers incoming frames from the wireless medium to

the MAC layer. The PLCP sublayer minimizes the dependence of the MAC layer on

the PMD sub layer by mapping MPDUs into a frame format suitable for

transmission by the PMD. Under the direction of the PLCP, the PMD provides

actual transmission and reception of PHY entities between two stations through the

wireless medium.

To provide this service, the PMD interfaces directly with the air medium and

provides modulation and demodulation of the frame transmissions. The PLCP and

PMD communicate using service primitives to govern the transmission and

reception functions.

Chapter 2 Wireless Communications: 18

2.2.2 Features:
The CCK code word is modulated with the QPSK technology used in 2 Mbps

wireless DSSS radios. This allows for an additional 2 bits of information to be

encoded in each symbol. Eight chips are sent for each 6 bits, but each symbol

encodes 8 bits because of the QPSK modulation. The spectrum math for 1 Mbps

transmission works out as 11 Mchips per second times 2 MHz equals 22 MHz of

spectrum. Likewise, at 2 Mbps, 2 bits per symbol are modulated with QPSK, 11

Mchips per second, and thus have 22 MHz of spectrum. To send 11 Mbps, 22MHz

of frequency spectrum is needed.

It is much more difficult to discern which of the 64 code words is coming across the

airwaves, because of the complex encoding. Furthermore, the radio receiver design

is significantly more difficult. In fact, while a 1 Mbps or 2 Mbps radio has one

correlator (the device responsible for lining up the various signals bouncing around

and turning them into a bit stream), the 11 Mbps radio must have 64 such devices.

(Gast, M. 2002)

2.2.3 Implementations:
The wireless physical layer is split into two parts, called the PLCP (Physical Layer

Convergence Protocol) and the PMD (Physical Medium Dependent) sublayer. The

PMD takes care of the wireless encoding explained above. The PLCP presents a

common interface for higher-level drivers to write to and provides carrier sense and

CCA (Clear Channel Assessment), which is the signal that the MAC (Media Access

Control) layer needs so it can determine whether the medium is currently in use.

The PLCP consists of a 144 bits preamble that is used for synchronization to

determine radio gain and to establish CCA. The preamble comprises 128 bits of

synchronization, followed by a 16 bits field consisting of the pattern

1111001110100000. This sequence is used to mark the start of every frame and is

called the SFD (Start Frame Delimiter). The next 48 bits are collectively known as

the PLCP header. The header contains four fields: signal, service, length and HEC

(header error check). The signal field indicates how fast the payload will be

transmitted (1, 2, 5.5 or 11 Mbps). The service field is reserved for future use. The

length field indicates the length of the ensuing payload, and the HEC is 16 bits CRC

Chapter 2 Wireless Communications: 19

of the 48 bits header.

In a wireless environment, the PLCP is always transmitted at 1 Mbps. Thus, 24

bytes of each packet are sent at 1 Mbps. The PLCP introduces 24 bytes of overhead

into each wireless Ethernet packet before we even start talking about where the

packet is going. Ethernet introduces only 8 bytes of data. Because the 192 bits

header payload is transmitted at 1 Mbps, 802.11b is at best only 85 percent efficient

at the physical layer. (Gast, M. 2002)

2.3 Wireless Local Area Network
A Wireless Local Area Network is a flexible data communications system that can

either replace or extend a wired LAN to provide added functionality. Using Radio

Frequency (RF) technology, WLANs transmit and receive data over the air, through

walls, ceilings and even cement structures, without wired cabling. A WLAN

provides all the features and benefits of traditional LAN technologies like Ethernet

and Token Ring, but without the limitations of being tethered to a cable. This

provides greatly increased freedom and flexibility. The importance of WLAN

technology however, goes far beyond just the absence of wires. The advent of the

WLAN opens up a whole new definition of what a network infrastructure can be. No

longer does an infrastructure need to be solid and fixed, difficult to move and

expensive to change. Instead, it can move with the user and change as fast as the

organization does.

Just as wired LANs use copper or fibre optic cable, WLANs also use a medium:

radio frequencies. Data is superimposed onto a radio wave through a process called

modulation, and this “carrier wave” then acts as the transmission medium, taking the

place of a wire. WLANs are very popular in a number of vertical markets including

the health-care, manufacturing, warehousing, retail and academic markets. (Mann, S.

2000)

Chapter 2 Wireless Communications: 20

2.4 WLAN Configuration
A WLAN can be configured in two basic ways:

2.4.1 Peer-to-peer (ad hoc mode)
This mode consists of two or more PCs equipped with wireless adapter cards, but

with no connection to a wired network. It is principally used to quickly and easily

set up a WLAN where no infrastructure is available, such as at a convention centre

or offsite meeting location.

Protocol layers may be defined in such a way that the communications within a layer

is independent of the operation of the layer being used. This is known as "peer-to-

peer" communication and is an important goal of the OSI reference model. Each

layer provides a protocol to communicate with its peer. When a packet is transmitted

by a layer, a header consisting of Protocol Control Information (PCI) is added to the

data to be sent.

Figure 2-0-1: Peer-to-Peer

In OSI terminology, the packet data (also known as the payload) is called a Protocol

Data Unit (PDU). The packet so-formed, called a Service Data Unit (SDU) is passed

via a service interface to the layer below. This is sent using the service of the next

lower protocol layer.

Chapter 2 Wireless Communications: 21

2.4.2 Client/server (infrastructure networking)
A wireless network can also use an access point, or base station. In this type of

network the access point acts like a hub, providing connectivity for the wireless

computers. It can connect (or "bridge") the wireless LAN to a wired LAN, allowing

wireless computer access to LAN resources, such as file servers or existing Internet

Connectivity.

There are two types of access points:

�� Dedicated hardware access points (HAP) such as Lucent's WaveLAN,

Apple's Airport Base Station or WebGear's AviatorPRO. Hardware access

points offer comprehensive support of most wireless features with some

basic requirements carefully.

�� Software Access Points which run on a computer equipped with a wireless

network interface card as used in an ad-hoc or peer-to-peer wireless network.

Several programs are software routers that can be used as a basic Software

Access Point, and include features not commonly found in hardware

solutions, such as Direct PPPoE support and extensive configuration

flexibility. These may not however, offer the full range of wireless features

defined in the 802.11 standard. (Pahlavan, K. 1995)

Figure 2-0-2: Software Access Point

With appropriate networking software support, users on the wireless LAN can share

files and printers located on the wired LAN and vice versa.

Chapter 2 Wireless Communications: 22

2.4.3 Selection
The WLAN Configuration used in the Wireless communication for the HSV project

was Peer-to-Peer. The network is only connecting two computers; therefore it would

be best to just communicate point to point. However, if we have more Utes to

control and communicate with at the same time it will also be possible to use the

peer-to-peer system.

2.5 Aim for the Wireless Communication
The HSV Ute is controlled using the onboard computer; therefore, the Ute never had

the chance to be fully automated without anyone accessing the onboard computer by

physically being located inside the Ute for safety and control reasons. Using wireless

network communication, we will be able to access all the Ute sensors and control all

the actuators without directly using the onboard computer which processes the

automation algorithms. The wireless communication software will read all the

sensors data and control all the actuators. To do that we have to run two softwares at

the same time:

1. The first one will be running from the Ute’s onboard computer using

Hyperkernel and accessing the shared memory to read all the sensors data.

2. The second one will be running from the operator’s computer which sends

commands to the onboard computer and asks for information or gives

orders.

Chapter 3 Hardware 23

Chapter 3

3 Hardware

3.1 Structure

The wireless communication implementation for networking is exactly the same as
the wired networking. However instead of using wire for linkage, we use some
wireless hardware for the implementation. First of all, if we want to link two
computers together we have to make a wireless connection between them. Each one
needs to be connected to a wireless Ethernet card; either by just plugging the card
into the laptop slot if it is available, or by using an extension box where it links the
wireless card with the Ethernet network card of the computer. In the HSV project,
the operator’s computer uses the wireless card by plugging it into the laptop slot,
where the Ute computer uses an extension to connect its Ethernet card to the
wireless card. For better range and more reliable connection each card is supported
by an external antenna.

Figure 3-0-1: Wireless Communication Hardware

Chapter 3 Hardware 24

3.2 Antennas
Antennas direct Radio Frequency (RF) power into a coverage area. Antennas are

available which produce differing coverage patterns. The correct antenna for a site is

chosen by determining the antenna that provides the coverage pattern best matched

to the site coverage requirements. Knowing the environment can help to determine

the right antenna and placement.

There are basically two types of antennas:

�� Omni-directional antennas have a 360-degree coverage pattern on a

horizontal plane. The coverage pattern is torus-shaped (like a doughnut).

These antennas are ideal for square or somewhat square areas.

�� Directional antennas concentrate the coverage pattern in one direction. This

produces an almost conical-shaped coverage pattern (like a flashlight). The

antenna directionality is specified by the angle of the beam width. Typical

beam width angles are from 90 degrees (somewhat directional), to as little as

20 degrees (very directional). The directed beam allows for a longer but

narrower coverage pattern, which is ideal for elongated areas, corners, and

outdoor point-to-point applications. (Liberti, J. 1999)

3.2.1 Gaining coverage range:
The increase in coverage within the RF beam width is called the antenna gain, and is

measured in dB (decibels). Antenna gain improves the range of the signal for better

communications. For an unobstructed outdoor site, each 1dB increase in gain

approximately results in a range increase of 5%. Actual results vary depending on

the amount and type of obstructions at the site.

3.2.2 Positioning antennas:
The proper positioning (orientation) of antennas at a site helps ensure the maximum

coverage area. Antennas should generally be mounted as high and as clear of

obstructions as practically possible. Best performance is attained when both

transmitting and receiving antennas are located at the same height and in direct line-

of-sight of each other.

Chapter 3 Hardware 25

3.3 Ute Antenna

The antenna chosen for the ‘Ute’ was 2.4 GHz 9dBi Omni-Directional for a circular
coverage. A majority of the time, the ‘Ute’ is moving randomly towards different
locations. Therefore, the Ute’s antenna cannot be angularly directed towards one
side only. The antenna can be located anywhere in the ‘Ute’. It is recommended that
the antenna be positioned on a high base not too close to the GPS’s (and the
differential GPS) antenna. The antenna was mounted on the top bar of the Ute.

3.3.1 Specifications
Frequency: 2400-2485 MHz

Gain: 9 dBi

Length/Weight: 27 inches, 2.0 lbs

OD Series Interface: N female connector

Mounting Kit: Mast mount kit included

Mounting Dimensions: Use mast up to 2" OD

Material: Polycarbonate with aluminium body, fiberglass

radome on OD12 with aluminium body

Nominal Impedance: 50 ohms

Max. Power (continuous): 100 watts

Vertical Beamwidth (-3 dB point): 9 dBi Model 14 degrees

Wind Loading (flat plate equiv.): 30-40 sq. inches

Rated Wind Velocity: 100+ mph

Antenna Diameter: 1", main mast

(Mobile Mark Antennas, 2002)

3.4 Operator Antenna
The operator antenna is a 2.4 GHz, Rubber Duck/Portable Antenna, Half wave 2.5

dB gain styles with a flexible head. The 2.5 dB gain antenna also compensates for

typical system losses that occur at these frequencies. Physically the antenna is very

small which can be simply glued or connected to the side of the operator’s computer.

For a secure and reliable connection it can be mounted on a high base stick or

column.

Chapter 3 Hardware 26

3.4.1 Specifications
Frequency: 2.4 - 2.485 GHz

Gain: 2.5 dBi max for 1/2 wave,

Bandwidth@2:1 VSWR: 85 MHz or better

Impedance: 50 Ohm nominal

Whip Length: 1/2 wave straight 4 inches

Maximum Power: 10 Watts

Whip Material: PSTN3 Series PVC jacket over dipole

(Mobile Mark Antennas, 2002)

3.5 Wireless Network Card
There are a large number of suppliers of wireless LAN cards in the market.

Regardless of this, an ORiNOCO Silver PC card was used because it was available

at the centre. The card is however excellent with high standards.

3.5.1 Silver Label Cards Features
The ORiNOCO Silver PC Cards supports the following wireless LAN features:

�� Automatic Transmit Rate Select mechanism in the transmit range of 11, 5.5,
2 and 1 Mbit/s.

�� Frequency Channel Selection (2.4 GHz).
�� Roaming over multiple channels.
�� Card Power Management.
�� Wired Equivalent Privacy (WEP) data encryption, based on the 64 bit RC4

encryption algorithm as defined in the IEEE 802.11 standard on wireless
LANs.

�� Plugs directly into laptop type-II PCMCIA slot
�� Wi-Fi (IEEE 802.11b) certified interoperability
�� Low power consumption
�� Wide coverage range of up to 1,750ft/550m
(Orinoco wireless card, 2002)

Chapter 3 Hardware 27

Figure 3-0-2: Orinoco Wireless Ethernet Card

3.5.2 Compatibility
The ORiNOCO PC Card is interoperable with other manufacturer’s high-speed
IEEE 802.11b compliant systems and is fully compliant with the WECA (Wireless
Ethernet Compatibility Alliance) Wi-Fi 'wireless fidelity' standard.

If only one ORiNOCO card is available, it would still be possible to wirelessly
communicate with the ‘Ute’ using another wireless Ethernet card for networking
from one of the side. The card has to be IEEE 802.11b compatible and be compliant
with WECA. (Orinoco wireless card, 2002)

If a replacement is required, look for the Wi-Fi-certified logo when purchasing the
new wireless card, which indicates that the product has been tested for
interoperability with other 802.11b devices. The Wi-Fi certification is awarded by
the Wireless Ethernet Compatibility Alliance (WECA), an industry consortium
whose members include most of the leading PC and networking companies, as well
as Wayport.

Wi-Fi (802.11b) wireless Ethernet cards are available from major networking
vendors such as Lucent, Cisco, 3Com, Intel, Sony, Symbol, Xircom, D-Link, and
Buffalo. Wi-Fi cards have become very common and are available at most computer
stores and through many online retailers. Leading PC manufacturers such as Dell,
Compaq, IBM, Toshiba, and Apple also are offering wireless cards with their
notebook computers and/or selling wireless-integrated notebooks. An average price
for the network card is A$300 (figure dated end 2002).

Chapter 3 Hardware 28

3.6 Ethernet Converter
The WaveLAN Ethernet Converter (EC) device enables us to quickly transform

wired computing devices, such as (desktop) computers and/or printers into wireless

devices. Replacing 10Base-T Ethernet and/or RS-232 cables with WaveLAN

wireless technology allows us to:

�� Expand or relocate existing wired networks within minutes, without

additional costs for (re-)wiring and connecting computer terminals and/or

printers to the network.

�� Provide WaveLAN mobile connectivity to devices that once were “tied” onto

their network cables.

The WaveLAN IEEE product family is based upon a standard PC Card that can be

used in:

�� Portable computing devices equipped with a Type II PCMCIA card socket.

�� Desktop computers equipped with an ISA card bus (using an adapter).

�� Lucent Technologies WavePOINT-II access points.

(Orinoco wireless card, 2002)

Figure 3-3: Ethernet Converter Hardware

3.7 Data Protection and Security
Wireless communications obviously provide potential security issues, as an intruder

would not need physical access to the traditional wired network in order to gain

access to data communications. However, 802.11 wireless communications cannot

be received --much less decoded-- by simple scanners, short wave receivers etc. This

Chapter 3 Hardware 29

has led to the common misconception that wireless communications cannot be

eavesdropped at all. However, eavesdropping is possible using specialist equipment.

To protect against any potential security issues, 802.11 wireless communications

have a function called WEP (Wired Equivalent Privacy), a form of encryption which

provides privacy comparable to that of a traditional wired network. If the wireless

network has information which should be secure, then WEP should be used,

ensuring the data is protected at traditional wired network levels.

Wired Equivalent Privacy (WEP) is a security protocol, specified in the IEEE

Wireless Fidelity (Wi-Fi) standard, 802.11b, which has been designed to provide a

wireless local area network (WLAN) with a level of security and privacy

comparable to what is usually expected of a wired LAN. A wired local area network

(LAN) is generally protected by physical security mechanisms (controlled access to

a building, for example) that are effective for a controlled physical environment, but

may be ineffective for WLANs because radio waves are not necessarily bound by

the walls containing the network. (Pahlavan, K. 1995)

WEP seeks to establish similar protection to that offered by the wired network's

physical security measures by encrypting data transmitted over the WLAN. Data

encryption protects the vulnerable wireless link between clients and access points;

once this measure has been taken, other typical LAN security mechanisms such as

password protection, end-to-end encryption, virtual private networks (VPNs), and

authentication can be put in place to ensure privacy.

It should also be noted that traditional Virtual Private Networking (VPN) techniques

will work over wireless networks in the same way as traditional wired networks.

3.8 Range Detection:

You can use the Client Manager icon on the Windows task bar to verify the link
quality of your network connection. An overview of all possible icons is given in
Table 3-1. When the Client Manager icon is not indicating excellent or good radio
connection, check the recommended steps to follow in section 3.9 for range
connection troubleshooting.

Chapter 3 Hardware 30

Table 3-1: Range Detection

Icon Colour Descriptions

Green Excellent radio connection

Green Good radio connection

Yellow Marginal radio connection.

Red

Poor radio connection:

The radio signal is very weak.

Red

No radio connection; Looking for initial

connection or moved out of range of the network

Blank Peer-to-Peer network connection is broken

The Client manager software also shows the percentage of communication data
transfer rate for each side of the network. It divides the range into 4 main parts the
11mbits, 5.5mbits, 2mbits and 1mbits. The better the connection the more rates of
11mbits is used.

3.9 Range Troubleshooting:

The connection range should be around 550m in a reasonably clear environment
using the previously selected antennas for a standard connection and safe data
transfer. However, in a situation less than 550m where a connection has failed or is
weak, check the following points:

�� Make sure the antenna cables are connected properly
�� The best place to put the operator’s antenna is as close to the center of the

area that you want to cover.
�� You'll probably do best if you orient your Wireless Router's antenna(s)

vertically.
�� Keep antennas away from large metal objects like filing cabinets and away

from operating microwave ovens or 2.4GHz cordless phones. Also watch out
for large containers of water... fish tanks or water heaters for example!

Chapter 3 Hardware 31

�� Most PC cards use an integrated antenna that is fairly directional. The
horizontal orientation of these PC card antennas is not the best... it would
work better if it were vertically oriented. Unfortunately no one has a PC card
with a moveable antenna and it's not very practical to work with your laptop
lying on its side!

�� If you're having trouble getting a strong signal with your laptop, try moving
so that the PC card's antenna is pointing toward the Ute’s antenna. Also
make sure your body isn't between the two antennas.

�� Avoid antenna placement close to an inside wall (unless inside is where you
want to be!). Also, if you want to connect while you're inside, place the
operator’s antenna near a window.

Chapter 4 Library Function 32

Chapter 4

4 Library Function

4.1 Background:
The message-bus API msg_bus is a library to support inter-process and inter-system

communication using the socket interface. The library uses the datagram message

protocol (UDP) as provided by IP. This choice was made, rather than using TCP, for

performance reasons and because the underlying (Switched Fast Ethernet in hub-

spoke layout) medium is reliable by itself: full-duplex point-to-point communication

between nodes and collision detection with resending of lost packets. The library is

for C++ coding syntaxes.

4.2 Message Bus Functions:
A distributed system consists of a number of systems (called nodes) where on every

node a number of processes (called tasks) can be running. The purpose of a message

bus is to enable these tasks to communicate for information exchange and for

synchronization purposes.

The reason for using a message bus for these exchanges is to avoid a large network

of point-to-point connections and to get modular system architecture. The aim is to

be able to communicate (message passing) between tasks on different nodes or

between tasks on the same node without causing any changes for other tasks in the

system.

The msg_bus library consists of a number of functions to be called by client, server

and peer-to-peer programs. By using these calls a fully distributed message passing

system can be realized in any of the supported operating systems.

Chapter 4 Library Function 33

The four main functions are:

�� msg_attach - initialise communication message bus

�� msg_detach - release connection with message bus

�� msg_send - send a message to another task and/or node

�� msg_receive - wait for a message to arrive and read it

The msg_bus library has a large number of functions that are not used in this thesis.

4.2.1 Attached:
The msg_bus library function msg_attach is the first to be called by any process that

wishes to use msg_bus. It will use the node and task to create a socket and to setup a

global structure with common data. The function returns MSG_OK (0) when

attachment is successful or one of the error codes in case of socket is open, bind, or

set-errors.

node

The node name of the own system (actually the IP address) represented by a string in

the format of “xxx.xxx.xxx.xxx” (for example “155.69.31.90”).

task

The task name of the own system: This should be a string, representing an integer

(actually a port number) in the range of 1024 to 65535 (for example “5016”)

4.2.2 Detach:
The msg_bus library function msg_detach should be called before quitting the

application that uses the msg_bus. It will close the socket. No parameters are

required.

long msg_detach();
long msg_attach(char *node, char *task);

Chapter 4 Library Function 34

4.2.3 Sending:
The msg_bus library function msg_send is used to send a message to another task.

The function will add an envelope with sender and receiver info. To be able to send,

the socket must attach first by using msg_attach(). The message ID and length will

(if necessary) be converted to network-byte order. For the contents of the data field

it is the responsibility of the application to do this. To be sure that it is received, the

back parameter has to be set to true. msg_send() will then wait for an

acknowledgment (of course using a timeout) before it returns. The function returns

MSG_OK (0) when the sending is successful, or one of the other error codes in case

of an error with sending, time-out or acknowledgment.

n

T

r

“

t

T

i

i

T

b

l

T

d

T

long msg_send(char *node, char *task, long id, long len, char *data,
 bool ck);
ode

he node name of the system (IP address) where the task resides. The node name is

epresented by a string in the format of “xxx.xxx.xxx.xxx” (for example

155.69.31.90”).

ask

he task name of the destination process: this should be a string, representing an

nteger (actually a port number) in the range of 1024 to 65535 (for example “5016”)

d

he identifier of the message to send (the ID of the structure of the message, needed

y the receiving task to extract the data).

en

he length, in bytes, of the following data block.

ata

he data block, this is a string.

Chapter 4 Library Function 35

ack

Boolean to set TRUE if the sender wants to wait for acknowledgement of receiving.

4.2.4 Receiving:
The msg_bus library function msg_receive will get a message from a socket and

respond with message ID and data. A timeout value can be given to wait a maximum

number of seconds. When a timeout happens, the function will return with the error

code MSG_ERR_TIMEOUT(-30). If the timeout is set to -1 the function will wait

forever for an incoming message (this will be used in a setup where the receiving

task is linked to an incoming event to provide callback functionality). The function

returns MSG_OK (0) when receiving the message is successful or one of the error

codes in case of an error while receiving, time-out or acknowledgment.

When receiving a data structure, this structure can only be determined after the

message ID is known. We create a pointer to a structure right format and assign it to

the unstructured data field to access the data.

n

T

T

e

ta

T

(

id

T

a

th

le

T

long msg_receive (char *node, char *task, long *id, long *len, char
 *data, long timeout);

ode

he node name of the system (the IP address) where the sending process originates.

he node name is represented by a string in the format of “xxx.xxx.xxx.xxx” (for

xample “155.69.31.90”).

sk

he task name of the sending process: this should be a string, representing an integer

actually a port number) in the range of 1024 to 65535 (for example “5016”)

he identifier of the received message. The ID is used by the sending task upon

greement with the receiving task to define the structure of the message, needed by

e receiving task to extract the data.

n

he length, in bytes, of the following data block

Chapter 4 Library Function 36

data

The data block, which is a string.

timeout

The number of milli-seconds to wait for an incoming message. When the timeout is

zero the function will only return with data which was present in the queue. When

negative, this function will block and wait until a message arrives.

4.3 Urgent Messages
The library can distinguish between normal messages and urgent messages. For

every task that uses a communication channel also an urgent channel can be opened.

If the normal communication channel is blocked, the urgent channel still can be used

The msg_bus library function msg_attach_urgent is similar to msg_attach however a

different socket is opened to provide a separate channel for urgent messages. This

urgent channel is needed because for urgent messages it is unacceptable to get

queued or even get lost because of buffer overflow.

The function is to be called by any process that wishes to use the urgent-channel

facilities of the msg_bus. It should be called at initialisation together with

msg_attach() The function returns MSG_OK (0) when attachement successful or

one of the error codes in case of socket open, bind, or set-errors.

The same th

The parame

long msg_attach_urgent(char *node, char *task);

ing will apply to sending messages, receiving messages and detaching.

ters are the same and look like the following:

Chapter 4 Library Function 37

I
c
u

long msg_send_urgent(char *node, char *task, long id, long len,
 char *data, bool ack);

long msg_receive_urgent (char *node, char *task, long *id, long

*len, char *data, long timeout);

msg_detach_urgent();

n the project the urgent messages weren’t used because basically the
ommunication messages were quite simple and on at the time. None of them were
rgent.

Chapter 5 Software Development 38

Chapter 5

5 Software Development

5.1 Introduction
At this stage of the thesis the hardware setup has been finalized and the networking

communication library was understood. Therefore the next stage is going to be the

software development. Software development had a general architecture that was

divided into five main stages: Requirement, design, coding, testing and maintenance.

The following graph shows the procedure taken into the development of the

software. After finalising some specific parts however, there was sometimes a need

to take it into consideration again because the architecture has a strong linkage with

the individual parts.

Figure 5-1: Software Development Stages

Requirements

Design

Coding

Testing

Maintenance

Chapter 5 Software Development 39

5.2 Requirements
The aim of the thesis is to design and build a wireless communication package that

is used to network the Ute’s onboard computer with the operator’s computer

wirelessly where commands, messages and sensor data can be transferred from one

computer to the other.

The final specification was that the software has to make a networking linkage

between the two computers where the operator can send some commands to the

Ute’s computer asking to send him some specific sensor data, or all the sensors data,

and the control constants for the actuators such as the starting point, Kp, Ki, Kd… the

data has to be saved on the operator computer, each sensor or each division in its

own txt file. Each file has to start with some specification about what the data is, the

starting date and time for the data collection and finish with the date and time of

ending of the data collection.

Each sensor has its own timing for allocation; it all depends on the time each sensor

is updated. The following table will show the timing for updating the data of each

sensor:

Table 5-1: Sensors Timing

Sensor Timing
GPS 1 200 ms

GPS 2 200 ms

Laser 1 200 ms

Laser 2 200 ms

Compass 100 ms

Ute Actuators 25 ms

General Ute Info 25 ms

INS 10ms

Chapter 5 Software Development 40

The selection of a combination of 2, 3 or more sensors would also be recommended,

because sometimes we only need a combination of just 2 or 3 sensors for navigation

or control. The rest would be useless for us, which is why it would be possible to

record the specified sensors using only some Dos interface.

5.3 Design
As was discussed earlier, we had to design two individual softwares: one for the Ute

and another one for the operator. The Ute program was quite simple and straight to

the point whereas the operator program was a bit more complicated.

The main software architecture is summarised by the following graph. The first
thing to do is to create a link between the two computers by attaching the individual
IP addresses together. The operator will then send a message to the Ute where it will
ask for some specific data (usually sensors data). The Ute software will read the data
from the shared memory (Hyperkernel shared memory) and will send it to the
operator’s computer. The operator software will finally write the data into a text file.
The software will be terminated when the operator desires it and the two programs
will then break the link between them. In the following part, the design for each
individual software is discussed in full detail.

Figure 5-2: Main Software Architecture

Sending
Data

Write to
TXT
Files

Read
Shared

Memory

Message
with ID

Wireless
Network

Connection

Operator
Software

Ute’s
Software

Chapter 5 Software Development 41

5.3.1 The Ute’s Software
The Ute’s software is pretty straight forward. The aim is to get the message search

for the data and send it to get the new one. This procedure should then repeat again

and again. If it doesn’t receive a message it will just wait forever.

The first thing is to get connected to the Hyperkernel shared memory where it will

have access to all the sensors. It will read all the sensors structure at real time.

Therefore, all the sensors data are updated each time the Hyperkernel updates the

sensors. Not all the sensors structure is requested however all the structure will be

sent and what is required will be saved.

The next step is detecting the IP address then attaching to the other software. A

networking link will be created. Then it will wait forever until it receives a message.

Each message received will mainly have no data in it (however we can send any data

or structure we want) it will only have a message ID. Each message ID number is a

request for some specific data. At this stage we will have a switching function that

contains nine different cases.

The first case is just a heart beat signal; in other words it is just a check up if the

connection is alive. The other eight cases are for the eight different set of sensors

structure. Each one is for individual sensors such as GPS, Laser, INS and Compass.

However, the encoder and actuator control values are only sent in two different

structures; one contains all the actuators positions and the wheel encoder and the

other one contains all the controllers’ settings.

Each sensor structure is sent on its own, one at a time. The speed of sending the data

is very fast, much smaller than the time each sensor is updated. Therefore, the

software can send all the sensors values before being delayed by any of them. After

sending all the data required, it will detach whenever the software is terminated by

receiving a message ID 0 for detaching.

The following figure shows the architecture step by step for the Ute’s software in

full detail.

Chapter 5 Software Development 42

Figure 5-3: Ute's Software Architecture

Attaching to Network

Ready to read
the message

Switch (msg_id)

If 1

If 2

If 5

If 4

If 3

Alive message

Read GPS1 & send it

Read GPS2 & send it

Read Laser1 & send it

Read Laser2 & send it

If 6
Read Compass & send it

If 7

If 0 Detaching from Network

While (True)

If 9 Read Ute Info & send it

Read Actuators & send it
If 8

Read INS & send it

Chapter 5 Software Development 43

5.3.2 The Operator’s Software
The operator program is where the decision has to be taken by the operator to decide

what kind of data is requested. In this part the operator has full control on the actions

of the Network communication.

The first part is attaching to the Ute’s computer that has to be running on the other

side and waiting for connection. To attach, the software will look for the computer

IP address and then make the connection using the msg_attach function.

The next part is detecting the date and the time the connection is made. Then it will

create eight different text files, one for each sensor. After creating the files it will

write the type of data saved in the file with the date and the time on the first line.

The next line would be the definition of each column of data. All of them will start

with the timestamp and then the sensors data such as latitude, longitude, mode,

satellite and so on (that was some of the GPS values)…

The following part is a section into a while loop always True till the operator wishes

to exit the program. At the beginning the operator will choose what kind of data they

want to request from the Ute. There are four main reasons:

1. Check if the connection is alive.

2. Exit the program and detach from the network.

3. Receive all the sensors data and save them into the text files.

4. Choose only specific sensors - one, two, three or more. In this stage, the

operator has to allocate the sensors one by one.

If the selection is incorrect, the operator can stop anything that is running and go

back to the selection. After running a test and saving some data at the same time

another selection of sensors can be made and new data will be saved. After the

operator is satisfied and he wishes to disconnect and terminate the program, he can

interrupt the process by choosing to exit, and the software will disconnect from the

network.

The following chart will show the software architecture of the operator’s software in

full details of operation. Each part might be made of other small parts that would be

included in it.

Chapter 5 Software Development 44

Figure 5-4: Operator's Software Architecture

&

&

&

Attaching to Network

Read Date & Time

Opening Text Files for Sensors

Select Data Required

While
(True)

Check if Connection Alive

Send to
FGPS1.txt

Ask for GPS1
 Receive it200ms If Required

Or
Send to

FGPS2.txt
Ask for GPS2

 Receive it200ms If Required

Send to
FLaser1.txt

Ask for Laser1
& Receive it200ms If Required

Send to
FLaser2.txt

Ask for Laser2
& Receive it200ms If Required

Send to
FCompass.txt

Ask Compass
 Receive it100ms If Required

Send to
FInfo.txt If Required

Send to
FActuators.txt If Required

Send to
FINS.txt If Required

Ask for INS &
send it10ms

Ask Actuators
& Receive it25ms

Read Actuators
& Receive it25ms

Detach from Network

Chapter 5 Software Development 45

5.4 Coding

The coding and debugging was done in Visual C++, Win32 DOS Interface.
Two main codes were written. One code was written for the Ute and the other code
for the operator. Each one of them will be discussed in the following section.

5.4.1 The Ute’s code

The first part was the attachment of the header files. The following list will show

some of the main unusual headers files:

�� #include "msg_bus.h" to include the wireless communication library.
�� #include "HypShare.h" for the Hyperkernel
�� #include "hkCommon.h" for the Hyperkernel
�� #include "SharedMemProtocol.h" for the shared memory where the sensors

and actuators data is read.

Then defining the sensors shared memory structures:

static void *hksur = NULL ;

static struct aietc_packet *pEtc ;

static struct sic_packet *pl1,*pl2 ;

static struct pos_packet *pGPS1,*pGPS2;

static struct ins_packet *pIns ;

static struct generalUTEInfo *pGui ;

static unsigned long LastCmpTime=1L ;

static struct Compass *pCmp=NULL ;

Then reading all the sensors structures from the Hyperkernel shared memory from

the Ute’s computer.

hksur = hkUserSharedRam(&szsm);

if (hksur!=NULL)

Reading the structure for the first Laser Sensor from the shared memory

pl1 = (struct

sic_packet*)(((char*)hksur)+LASER_OFFSET_in_USERSHAREDMEMORY) ;

Chapter 5 Software Development 46

Reading the structure for the second Laser Sensor from the shared memory

pl2 = pl1+1 ;

Reading the structure for the first GPS Sensor from the shared memory

pGPS1 = (struct

pos_packet*)(((char*)hksur)+GPS1_OFFSET_in_USERSHAREDMEMORY) ;

Reading the structure for the second GPS Sensor from the shared memory

pGPS2 = pGPS1+1 ;

Reading the structure for the Ute general Sensor such as encoders from the shared

memory

pEtc = (struct

aietc_packet*)(((char*)hksur)+ETC1_OFFSET_in_USERSHAREDMEMORY) ;

Reading the structure for the INS Sensor from the shared memory

pIns = (struct ins_packet *)

(((char*)hksur)+INS_OFFSET_in_USERSHAREDMEMORY) ;

Reading the structure for the Compass Sensor from the shared memory

pCmp = (struct Compass*)

(((char*)hksur)+COMPASS_OFFSET_in_USERSHAREDMEMORY) ;

Reading the structure for the General Ute info such as setting points for controllers

from the shared memory

 pGui = (struct generalUTEInfo *)((char*)hksur

+ETC2_OFFSET_in_USERSHAREDMEMORY) ;

The next part would be detecting the IP address of the Ute’s computer for future

connection to the network.

//Cheking the IP Adresses

WORD wVersionRequested;

WSADATA wsaData;

char name[255];

Chapter 5 Software Development 47

PHOSTENT hostinfo;

wVersionRequested = MAKEWORD(2, 0);

if (WSAStartup(wVersionRequested, &wsaData) == 0)

 {

 if(gethostname (name, sizeof(name)) == 0)

 {

 if((hostinfo = gethostbyname(name)) != NULL)

 {

 own_node = inet_ntoa (*(struct in_addr *)*hostinfo->h_addr_list);

 printf("\n the IP is %s \n \n",own_node);

 }

 }

 WSACleanup();

 }

After detecting the IP address the wireless networking connection will be made

using the msg_attach function from the “Msg_bus” Library. The “own_node” is the

IP address and the “5220” is a randomly chosen port number.

/* connect to the message bus */

if ((rc = msg_attach (own_node, "5220")) != MSG_OK)

msg_error (rc);

The next stage is a while loop that is always true.

After that the program will use the msg_receive function where it wait for a message

form the operator’s computer and aiming to read it’s msg_id and then decide which

stage to go to using the switching function.

while(1){

rc = msg_receive (snd_node, snd_task, &msg_id, &msg_len, msg_data,-1);

if(rc!=MSG_OK)

msg_error (rc);

printf("id is %d\n", msg_id);

switch(msg_id)

 {

Chapter 5 Software Development 48

Case one is when the operator is just checking if eth connection is alive. Therefore,

the message received will contain nothing except 1 as ID. Case will return an empty

message again with ID equal to 1.

case 1:

 {

 if ((rc = msg_send("snd_node", "5110", 1, 0, NULL, FALSE)) != MSG_OK)

msg_error (rc);

 break;

 }

The rest of the cases are sending the sensors data whenever they are requested. Only

the first GPS case is outlined and explained. The case ID for the GPS is 2. The main

task for this case is sending the GPS2 data structure.

case 2: // Send GPS1

{

rc = msg_send (own_node,"5110", msg_id, sizeof(struct pos_packet),(char*) pGPS1, -1);

if(rc!=MSG_OK)

msg_error (rc);

break;

Case Zero is where the user is asking to terminate the program and break the

wireless network connection.

case 0:

 {

if ((rc = msg_detach ()) != MSG_OK)

msg_error (rc);

5.4.2 The Operator’s Software

The first part was the attachment of the header files. The following list will show

some of the main unusual headers files:

�� #include <time.h> for detecting the date and the time
�� #include "msg_bus.h" to include the wireless communication library.
�� #include "SharedMemProtocol.h" for the shared memory where the sensors

and actuators data is read.

Chapter 5 Software Development 49

The next part would be detecting the IP address of the Operator’s computer for

future connection to the network.

//Cheking the IP Adresses

WORD wVersionRequested;

WSADATA wsaData;

char name[255];

PHOSTENT hostinfo;

wVersionRequested = MAKEWORD(2, 0);

if (WSAStartup(wVersionRequested, &wsaData) == 0)

 {

 if(gethostname (name, sizeof(name)) == 0)

 {

 if((hostinfo = gethostbyname(name)) != NULL)

 {

 ip = inet_ntoa (*(struct in_addr *)*hostinfo->h_addr_list);

 printf("\n the IP is %s \n \n",ip);

 }

 }

 WSACleanup();

 }

After detecting the IP address the wireless networking connection will be made

using the msg_attach function from the “Msg_bus” Library. The “own_node” is the

IP address and the “5110” is a randomly chosen port number.

/* connect to the message bus */

if ((rc = msg_attach (ip, "5110")) != MSG_OK)

msg_error (rc);

The next step is reading the date and eth time from the computer. The date and the

time will be read from the windows operating system.

// Time

time(&bintime);

curtime=localtime(&bintime);

Chapter 5 Software Development 50

The next step is opening eight different files each one for a specific sensor. The files

are ASCII format. The first line in the will be the definition of what the file contains

then what date and time was created. After that, the value of each column will be

defined. It might not be aligned with the column but it will be clear enough to

identify the data. The following example is just for the GPS1 data. The rest of eth

sensors files are created using the same procedures.

// Oppening GPS1

 if((FGPS1 = fopen("FGPS1.txt", "w")) == NULL)

 printf("The file was not opened\n");

 fprintf(FGPS1, "The File Contains the First GPS Data on: %s",

 ctime(&bintime));

fprintf(FGPS1, "timestamp, latitude, longitude, altitude, ttcourse, speedog,

vspeed, sigmaLati, sigmaLongi, sigmaAlti, mode, satellites");

At this stage, the operator will be able to decide one of four main option:
1. The letter " e " to exit
2. The letter " a " for all the sensors to be retrieved and saved
3. The letter " p " to check if the connection is alive
4. The letter " s " to select some specific sensors and/or actuators data

while(msg_id!=0)

{
if (id_imput!="0" | id_imput!="1" | id_imput!="2" | id_imput!=3)

{

printf("\n Please choose one of the following options: \n");

printf("\n -> the letter " 0 " to exit \n");

printf("\n -> the letter " 2 " for all the sensors to be retrieved and saved\n");

printf("\n -> the letter " 1 " to check if the connection is alive\n");

printf("\n -> the letter " 3 " to select some specific sensors and/or actuators data\n");

gets(id_input);

}

If the letter “0” is selected, the operator is wishing to exit. Therefore the message

sent to the Ute will have an ID of zero that request network disconnection. So the

two computers will detach from the network and the communication link will brake.

Chapter 5 Software Development 51

if(id_imput==0)

{

msg_id=0;

 if ((rc = msg_send (ip, "5220", msg_id, 0, NULL, FALSE)) != MSG_OK)

 printf("NO CONNECTION %d", rc);

 if ((rc = msg_detach ()) != MSG_OK)

 msg_error (rc);

 }

If the letter “1” is selected, the operator is just checking if the connection is alive.

Therefore a message with an ID equal to 1 is sent and it will print a message saying

I’m alive to the operator every 1 second. The operator can interrupt the process by

pressing any key.

if(id_imput=="1")

 {

 while(!_kbhit())

 {

 msg_id=1;

if ((rc = msg_send (ip, "5220",msg_id, 0, NULL, FALSE)) != MSG_OK)

 printf("NO CONNECTION %d", rc);

 msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

 sleep(1000);

 printf(" i'am alive\n");

 }

 id_input=1;}

If the letter “2” is chosen that means the operator is after all the sensors data to be

saved. The following code will show how each part is calling for a sensor and after

receiving the data will call for the next sensor. The timing for updating each sensor

is different that is why sometimes we will call a sensor more then once before

calling the others. The structure of the calling and timing is controlled using the for

statement counting and the sleep() function for timing.

Chapter 5 Software Development 52

if(id_imput==2)

{msg_id=2;

if ((rc = msg_send (ip, "5220", msg_id, 0, NULL, FALSE)) != MSG_OK)

printf("NO CONNECTION %d", rc);

while(!_kbhit())

{for(int d=0; d<1; d++)

{

// GPS 1

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

GPS1=*(pos_packet *)msg_data;

fprintf(FGPS1,"%d %d %d %d %d %d %d %d %d %d %d %d \n",GPS1.timestamp,

GPS1.latitude,GPS1.longitude,GPS1.altitude,GPS1.ttcourse,GPS1.speedog,GPS1.vspeed,GPS1.sigm

aLati,GPS1.sigmaLongi,GPS1.sigmaAlti,GPS1.mode,GPS1.satellites);

msg_send (ip, "5220", 3, 0, NULL, FALSE);

// GPS 2

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

GPS2=*(pos_packet *)msg_data;

fprintf(FGPS2,"%d %d %d %d %d %d %d %d %d %d %d %d \n",

GPS2.latitude,GPS2.longitude,GPS2.altitude,GPS2.ttcourse,GPS2.speedog,GPS2.vspeed,GPS2.sigm

aLati,GPS2.sigmaLongi,GPS2.sigmaAlti,GPS2.mode,GPS2.satellites,GPS2.timestamp);

msg_send (ip, "5220", 4, 0, NULL, FALSE);

// Laser 1

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

l1=*(sic_packet *)msg_data;

for (j=0;j<361;j++)

{l1.range[j] ;

fprintf(FLaser1,"%d ",l1.range[j]);}

fprintf(FLaser1,"\n");

msg_send (ip, "5220", 5, 0, NULL, FALSE);

// Laser 2

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

l2=*(sic_packet *)msg_data;

for (j=0;j<361;j++)

{l2.range[j] ;

fprintf(FLaser2,"%d ",l2.range[j]);}

Chapter 5 Software Development 53

fprintf(FLaser2,"\n");

msg_send (ip, "5220", 6, 0, NULL, FALSE);

for(int c=0; c<2; c++)

{

// Compass

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

Cmp=*(Compass *)msg_data;

fprintf(FCompass,"%d %d %d\n",Cmp.Heading,Cmp.Pitch,Cmp.Roll);

msg_send (ip, "5220", 8, 0, NULL, FALSE);

for(int b=0; b<5; b++)

{

// Actuators

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

Ins=*(ins_packet *)msg_data;

fprintf(FActuators,"%d %d %d %d %d\n", Etc.Counts ,Etc.Accelerator ,Etc.Steering, Etc.Brake

,Etc.timestamp);

msg_send (ip, "5220", 9, 0, NULL, FALSE);

// Send Ute Info

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

Gui=*(generalUTEInfo *)msg_data;

fprintf(FActuators,"%d %d %d %d %d %d %d %d %d %d\n", Gui.PID_A.Kp, Gui.PID_A.Ki,

Gui.PID_A.Kd, Gui.PID_A.SeMin ,Gui.PID_A.SeMax, Gui.PID_A.yMin, Gui.PID_A.yMax,

Gui.PID_A.spoint,Gui.SteeringControlMode,Gui.manual_steering);

msg_send (ip, "5220", 7, 0, NULL, FALSE);

 for(int a=0; a<2; a++)

 {

 // INS

msg_receive (snd_node1, snd_task1, &msg_id, &msg_len, msg_data,-1);

 Ins=*(ins_packet *)msg_data;

 fprintf(FINS,"%d %d %d %d %d %d %d %d\n" ,Ins.bank, Ins.elev, Ins.ax,Ins.ay, Ins.az, Ins.gx,

Ins.gy, Ins.gz);

msg_send (ip, "5220", 2, 0, NULL, FALSE);

 printf("Count %d \n",a);

 Sleep(10);

 } } } } }

printf("\n Please Enter the ID Number\n");

gets(id_input);}

Chapter 5 Software Development 54

If the operator chooses the letter “3” then a series of selection he/she will have to go

through. The program will ask him for every single set of sensors data if it is

required to be read and saved. Then whenever the sensor is not selected saving it to

the txt will be ignored. The structure of that part will be exactly the same as the

previous part with more if statement for selection.

5.5 Testing & Maintenance
After debugging the codes and getting rid of all the main debugging errors and

warnings, some code weaknesses were discovered. I was successful in fixing some

of them but others were difficult and required an extensive amount of time. The

following part will discuss some of the code weaknesses:

Because the softwares are running at real time and the Ute’s program is using the

Hyperkernel shared memory, we have to run the Hyperkernel software to read the

sensors at real time and save them in the shared memory. Therefore, the Ute’s

software will be accessing and sending fresh sensor’s data to the operator through

the wireless communication network. The implementation can be done without

running the Hyperkernel if we join the two softwares together with the Hyperkernel

and the communication. However this would take a lot of unwanted effort.

As has been discussed before, we are able to select between sensors data to save it in

text files. However if we choose to save the GPS1 first, followed by the laser and

back to the GPS1 data again, it will continue wherever it finished saving from the

previous part of the GPS1 with a new set of timestamps. However if we exit the

software, and run it again by selecting the GPS1, it will overwrite the existing GPS1

data. It is recommended to save the files in a different directory each time a test is

finished. A solution to this would be letting the program create a new directory each

time we run it where its name is related to the date and time, and record the data in

it.

Chapter 5 Software Development 55

Another weakness that was discovered is that if we make the operator’s program

print the data required on the screen it will slow the processor and makes reading

data process slower which can lead to a delay in sensor’s update. Therefore, printing

the data on the screen was cancelled to prevent any delay. All the data will only be

saved on the text files.

The data text output was first created as ASCII files. It was recommended to save

larger data files as binary. However, space does not really matter when using the

operator’s computer. Having a hard disk of at least 10Gbyte would be more than

enough for the sensors data for hours of testing. However, if binary type files are

required it would be an easy option to implement by giving the option to save before

creating the file. I would prefer to use ASCII because it is easier to understand and

easier to use for graphing or filtering without the need for any code or library for

translation.

With the operator’s software, the user will have a choice of selections regarding data

transfer and saving at the beginning of the program. At this stage a wrong input

would lead to a wrong decision implementation. Therefore, an error detection

procedure was designed to prevent wrong input commands that would lead to wrong

code implementation and processing.

Chapter 6 Safety 56

Chapter 6

6 Safety

6.1 Aims
This chapter is written for two main reasons

�� To reduce the incidence of accidents & injuries (and associated pain,

suffering, costs and lost time) within the ACFR centre and especially within

the HSV Project

�� To comply with the NSW Occupational Health and Safety Regulation 1991.

6.2 Occupational Health and Safety Policy
The Australian Centre for Field Robotic is committed to providing a healthy and

safe workplace and to eliminating conditions and incidents which could result in

personal injury or ill health. The ACFR requires its activities to conform to relevant

state and federal legislation and good, established practices including Australian

Standards.

The Centre recognises that success depends on the commitment and cooperation of

staff and students. The ACFR expects staff and students to comply with its

occupational health and safety policies, procedures and guidelines, and to conduct

themselves in a safe manner, not placing themselves or others at risk. Members of

staff are responsible for the health and safety of staff and students working under

their direction. The ACFR is also responsible for providing a safe and healthy

environment for its visitors and members of the public who come onto University

premises or are affected by the University's activities.

Chapter 6 Safety 57

6.3 HSV Project Safety
The ACFR centre at the University of Sydney never had major accidents which led

to any injury. The zero number of injuries / accidents is a result of the strict safety

rules that the centre obliges the staff, students, researchers and visitors to follow

when working (even if just watching) on any project. The HSV project is a project

that involves a lot of risky activities while working on it, especially during testing.

One of the project aims is to design a fully automated vehicle that is able to scan,

navigate at a high speed and create a map of the environment. At the moment the

‘Ute’ can only do very specific tasks regarding automation, however, it is still very

dangerous to leave the onboard ‘Ute’ computer with full control of the actuators.

While it is capable of doing proper and safe tasks, it remains a risk. Therefore,

operators have to be located inside the vehicle at anytime when the car engine is

ON.

6.4 Safety Procedures
When someone is working within the HSV project, their safety and the safety of the

people around them has to be taken into consideration. He/she shall not undertake

any risky activities. Therefore, if the person is unsure about the risk level of the

activity, he/she shall consult the supervisor or any of the experienced team members

of the HSV project.

When working on the ‘Ute’, installing hardware, testing components, driving the

‘Ute’, doing a run test or any other activity involving the ‘Ute’ he/she shall adhere to

the following procedures:

Test procedure:

�� Any test on the ‘Ute’ has to be approved by the supervisor.

�� The driver should have a full driver’s licence authorized by RTA Australia,

or any equivalent international driver’s licence approved by the RTA

�� The diver should fill in a form requested by the ACFR management only

once before driving any University vehicles.

�� Whenever a test is required, at least 2 people have to be on site (being on

Chapter 6 Safety 58

your own is not enough).

�� The driver shall never leave the drivers seat whenever the ‘Ute’ is ON.

�� In the Automatic status the Ute’s computer should not be fully trusted to be

in full control. Driver has to be ready for any surprises.

�� The testing speed should not exceed 20 Km/h.

�� The driver and the passenger should always wear their seat belts.

�� Be careful when the wireless communication antenna is mounted not to go

into car parks or under roofs that are less then 2.4 meters high.

�� After any testing, turn off all the sensors and actuators.

�� Shut down the onboard computer.

�� Be sure to place the gear on “P”, handbrake on and give keys back to the

supervisor.

If an emergency occurs in the automated status, the following steps should be

adhered to (one or more actions can be handled at the same time):

�� Apply the foot brake to the maximum.

�� Turn off the car.

�� Switch the mode from automated to manual by pressing the auto/man

switch located on the dashboard next to the Hazards switch to disengage

the electromagnetic clutch that control the steering wheel.

�� Apply the hand brake.

�� Turn off the power to the actuators.

�� If any accident or injury occurs, report it as soon as possible. (For more

details about this section read the next part: “Procedures when accidents

happen”).

6.5 Procedures: When Accidents Happen
These procedures have to be followed whenever any accidents occur within the

ACFR building, University properties and/or while working on the HSV project at

anytime or anywhere.

Chapter 6 Safety 59

1. Importance of Reporting

Reporting of accidents is essential for the identification of hazards in the workplace.

Remedial action can then be taken to address the identified hazards and prevent any

recurrence of the incident. Reporting is to be made by staff, students or visitors who

are injured or become ill in connection with their work when visiting or working at

the University. Incidents with potential for injury or damage (near misses) should

also be reported. The accident report also acts as a record for future reference should

there be any subsequent complication for example, delayed health effects that may

require the report as a factual base.

2. Minor Injuries

Minor injuries which require no treatment or minor first aid treatment only, should

also be reported to prevent it from happening at any other time with more serious

effects.

3. ACCIDENT INVESTIGATION

Reported accidents and incidents should be promptly investigated by the immediate

supervisor of the injured or ill person, or by the person in charge of the area where

the incident occurred. The investigation should identify the causes of the accident

and any hazards that need to be controlled. Supervisors should then take action to

control the hazards which have been identified.

6.6 WaveLAN Health Safety
WaveLAN, like other radio devices, emits radio frequency electromagnetic energy.

The level of energy emitted by WaveLAN devices however is far much less than the

electromagnetic energy emitted by wireless devices like for example mobile phones.

Because WaveLAN operates within the guidelines found in radio frequency safety

standards and recommendations, it is believed that WaveLAN is safe for use by

consumers. These standards and recommendations reflect the consensus of the

scientific community and result from deliberations of panels and committees of

scientists who continually review and interpret the extensive research literature.

In some situations or environments, the use of WaveLAN may be restricted by the

Chapter 6 Safety 60

proprietor of the building or responsible representatives of the organization. These

situations may for example include:

�� Using the WaveLAN equipment on board airplanes, or

�� In any other environment where the risk of interference to other devices or

services is perceived or identified as harmful.

If you are uncertain of the policy that applies to the use of wireless devices in a

specific organization or environment (e.g. airports), you are encouraged to ask for

authorization to use the WaveLAN device prior to turning on the equipment.

6.7 Conclusion
In summary, the above is just a basic outline of what staff, students or visitors

should take into consideration in relation to safety procedures. Safety in the

workplace results in mental and physical well-being, as well as cost and time-saving

efficiencies. Adhering to safety procedures also ensures the safety of those around

you in the workplace.

Conclusion 61

Chapter 7

7 Conclusion

The wireless communication package design and implementation was discussed in

this thesis. The first part was choosing the specific data required from the shared

memory. Each sensor has its own data structure and updated with different time

scales. The hardware was specifically chosen to this particular application. The

software was written using “msg_bus” library in C++ where the software was

divided into two parts: One for the Ute and eth other one for the operator.

7.1 Future work & Implementation:
The same system can be used in many other situations. However some future

adjustment would be possible and convenient:

�� Same implementation but instead of wireless it can be networked by cables.

�� The operator can also write to the shared memory where all the general Ute

Info data can be changed such as the Kp, Ki, Kd...

�� The commands can be detected using some voice detection software for

operation and cases selections.

�� The antennas can be larger for more area coverage.

�� The data can be written into a database. Therefore we will have only one file

with different tables for different set of data.

�� The operation can also be linked on the internet. Therefore the operator’s

computer will have its base within the Ute’s coverage and the data files

would be uploaded on the internet where they can be accessed from

anywhere in the world.

Conclusion 62

�� The interface can be written in an MFC project where the GUI’s can be more

interactive and exciting.

�� The Sensor’s data can be graphed at the same time it is updated. Real time

graphing.

References: 63

References:
�� Enos, L. 2000. “www.ecommercetimes.com/perl/story/3782.html”. E-

Commerce Times.
�� Gast, M. 2002. “802.11 wireless networks : the definitive guide”.

Sebastopol, CA, O'Reilly, 1st edition

�� Mann, S. 2000. “Programming applications with the wireless application

protocol: the complete developer's guide”. New York: John Wiley & Sons.

�� Mobile Mark Antennas, 2002. http://www.mobilemark.com. Hednesford,

Staffs. WS12 5NR, UK.

�� Liberti, J. 1999. ”Smart antennas for wireless communications : IS-95 and

third generation CDMA applications” Upper Saddle River, NJ : Prentice

Hall PTR.

�� Pahlavan, K. 1995. “Wireless information networks”. New York : Wiley.

�� Orinoco wireless card, 2002, http://www.orinocowireless.com/ USA.

http://www.ecommercetimes.com/perl/story/3782.html
http://www.mobilemark.com/
http://www.orinocowireless.com/

Appendix A: 64

Appendix A:

	High Speed Vehicle Project
	The University of Sydney

	Declaration:
	Abstract:
	Acknowledgments:
	Abbreviations:
	Content Page:
	List of Tables:Table 3-1: Range Detection30Table ?5-1: Sensors Timing39
	List of Figures:
	Chapter 1
	Introduction
	High Speed Vehicle (HSV) Project background
	HSV Sensors & Actuators
	HSV Sensors
	Differential GPS Unit
	Inertial Navigation System
	SICK Bearing Laser
	LVDT
	Wheel Encoder
	Compass
	Throttle Potentiometer
	Brake Potentiometer

	Actuator & Controller
	Steering Actuator & Controllers
	Throttle Actuator & Control
	Brake Actuator & Control
	Data Transfer

	Chapter 2
	Wireless Communications:
	Introduction
	Bluetooth
	WDCT
	HomeRF
	802.11b
	802.11a
	HiperLAN

	IEEE 802.11.b
	Terminology:
	Features:
	Implementations:

	Wireless Local Area Network
	WLAN Configuration
	Peer-to-peer (ad hoc mode)
	Client/server (infrastructure networking)
	Selection

	Aim for the Wireless Communication

	Chapter 3
	Hardware
	Structure
	Antennas
	Gaining coverage range:
	Positioning antennas:

	Ute Antenna
	Specifications

	Operator Antenna
	Specifications

	Wireless Network Card
	Silver Label Cards Features
	Compatibility

	Ethernet Converter
	Data Protection and Security
	Range Detection:
	Range Troubleshooting:

	Chapter 4
	Library Function
	Background:
	Message Bus Functions:
	Attached:
	Detach:
	Sending:
	Receiving:

	Urgent Messages

	Chapter 5
	Software Development
	Introduction
	Requirements
	Design
	The Ute’s Software
	The Operator’s Software

	Coding
	The Ute’s code
	The Operator’s Software

	Testing & Maintenance

	Chapter 6
	Safety
	Aims
	Occupational Health and Safety Policy
	HSV Project Safety
	Safety Procedures
	Procedures: When Accidents Happen
	WaveLAN Health Safety
	Conclusion

	Chapter 7
	Conclusion
	Future work & Implementation:

	References:
	Appendix A:

