home Me Research Contact

Publications

JOURNALS

  1. new R.J. Murphy and S.T. Monteiro, Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm), ISPRS Journal of Photogrammetry & Remote Sensing, v. 75, pp. 29-39, 2013.
    [PDF] [BibTex]
  2. new R.J. Murphy, S.T. Monteiro, S. Schneider, Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors, IEEE Transactions on Geoscience and Remote Sensing, v. 50, n. 8, pp. 3066-3080, 2012.
    [PDF] [BibTex]
  3. A. Kadkhodaie-Ilkhchi, S.T. Monteiro, F. Ramos and P. Hatherly, Rock Recognition from MWD data: A Comparative Study of Boosting, Neural Networks and Fuzzy Logic, IEEE Geoscience and Remote Sensing Letters, v.7, n. 4, pp. 680-684, 2010.
    [PDF] [BibTex]
  4. T. Edanaga, Y. Minekawa, S.T. Monteiro and Y. Kosugi, Studies on human skin extraction from hyperspectral data using particle swarm optimization, Journal of the Japan Society of Photogrammetry and Remote Sensing, v. 47, n. 3, pp. 23-36, 2008.
    [PDF] [BibTex]
  5. S.T. Monteiro and Y. Kosugi, Particle Swarms for Feature Extraction of Hyperspectral Data, IEICE Transactions on Information and Systems, v. E90-D, n. 7, pp. 1038-1046, 2007.
    [PDF] [BibTex] [Matlab code]
  6. S.T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and K. Oda, Prediction of Sweetness and Amino Acid Content in Soybean Crops from Hyperspectral Imagery, ISPRS Journal of Photogrammetry & Remote Sensing, v. 62, n. 1, pp. 2-12, 2007.
    [PDF] [BibTex]
  7. S.T. Monteiro, K. Uto, Y. Kosugi, N. Kobayashi, and E. Watanabe, Optimization of Infrared Spectral Manipulation for Surgical Visual Aid, Journal of Japan Society of Computer Aided Surgery, v. 8, n. 1, pp. 33-38, 2006.
    [PDF] [BibTex]
  8. S.T. Monteiro, K. Uto, Y. Kosugi, N. Kobayashi, E. Watanabe, and K. Kameyama, Feature Extraction of Hyperspectral Data for under Spilled Blood Visualization Using Particle Swarm Optimization, International Journal of Bioelectromagnetism, v. 7, n. 1, pp. 232-235, 2005.
    [PDF] [BibTex]
  9. S.T. Monteiro and C. H. C. Ribeiro,Performance of reinforcement learning algorithms in mobile robotics under conditions of sensorial ambiguity, Journal of Control and Automation of the Brazilian Society of Automatics, v. 15, n. 3, pp. 320-338, 2004. [in Portuguese]
    [PDF] [BibTex]
CONFERENCES
  1. New H. Zhou, P. Hatherly, S.T. Monteiro, F. Ramos, F. Oppolzer, E. Nettleton and S. Scheding, Automatic rock recognition from drilling performance data, IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 3407-3412, Saint Paul, USA, 2012.
    [PDF] [BibTex]
  2. S.T. Monteiro, J. van de Ven, F. Ramos and P. Hatherly, Learning 3D Geological Structure from Drill-Rig Sensors for Automated Mining, International Joint Conference on Artificial Intelligence (IJCAI), pp. 2500-2506, Barcelona, Spain, 2011. (17% acceptance rate)
    [PDF] [BibTex] [Video]
  3. A.S.J. Tjiong and S.T. Monteiro, Feature selection with PSO and kernel methods for hyperspectral classification, IEEE Congress on Evolutionary Computation (CEC), pp. 1762-1769, New Orleans, USA, 2011.
    [PDF] [BibTex] [Matlab code]
  4. S.T. Monteiro and R.J. Murphy, Embedded feature selection of hyperspectral bands with boosted decision trees, IEEE Intl. Geoscience and Remote Sensing Symposium (IGARSS), pp. 2361-2364, Vancouver, Canada, 2011.
    [PDF] [BibTex] [Video] [Slides]
  5. H. Zhou, S.T. Monteiro, P. Hatherly, F. Ramos, E. Nettleton and F. Oppolzer, Automated rock recognition with wavelet feature space projection and Gaussian process classification, IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 4444-4450, Alaska, USA, 2010.
    [PDF] [BibTex]
  6. S.T. Monteiro and R.J. Murphy, Calibrating probabilities for hyperspectral classification of rock types, IEEE Intl. Geoscience and Remote Sensing Symposium (IGARSS), pp. 2800-2803, Honolulu, USA, 2010.
    [PDF] [BibTex]
  7. J. Nieto, D. Viejo and S.T. Monteiro, 3D geological modelling using laser and hyperspectral data, IEEE Intl. Geoscience and Remote Sensing Symposium (IGARSS), pp. 4568-4571, Honolulu, USA, 2010.
    [PDF] [BibTex]
  8. S.T. Monteiro, F. Ramos, P. Hatherly, Conditional random fields for rock characterization using drill measurements, International Conference on Machine Learning and Applications (ICMLA), pp. 366-371, Miami, USA, 2009.
    [PDF] [BibTex]
  9. S.T. Monteiro, R.J. Murphy, F. Ramos and J. Nieto, Applying boosting for hyperspectral classification of ore-bearing rocks, IEEE Intl. Workshop on Machine Learning for Signal Processing (MLSP), Grenoble, France, 2009.
    [PDF] [BibTex]
  10. S. Schneider, R.J. Murphy, S.T. Monteiro and E. Nettleton, On the development of a hyperspectral library for autonomous mining systems, Australasian Conference on Robotics and Automation (ACRA), Sydney, Australia, 2009.
    [PDF] [BibTex]
  11. H. Zhou, S.T. Monteiro, P. Hatherly, F. Ramos, E. Nettleton and F. Oppolzer, Spectral feature selection for automated rock recognition using gaussian process classification, Australasian Conference on Robotics and Automation (ACRA), Sydney, Australia, 2009.
    [PDF] [BibTex]
  12. S.T. Monteiro, K. Uto, Y. Kosugi, K. Oda, Y. Iino and G. Saito, Hyperspectral image classification of grass species in northeast Japan, IEEE Intl. Geoscience and Remote Sensing Symposium (IGARSS), vol. 4, pp. 399-402, Boston, 2008.
    [PDF] [BibTex]
  13. Y. Kosugi, D. Gullaume, Y. Takabayashi, S.T. Monteiro, M. Yamaki, K. Uto and G. Saito, Low-altitude hyperspectral imaging of Naruko integrated field for the interpretation of high-altitude observations, 6th  Intl. Symposium on Integrated Field Science, p.A-2, Sendai, Japan, 2008.
    [PDF] [BibTex]
  14. S.T. Monteiro and Y. Kosugi, A Particle Swarm Optimization-based Approach for Hyperspectral Band Selection, IEEE Congress on Evolutionary Computation (CEC), pp. 3335-3340, Singapore, 2007.
    [PDF] [BibTex]
  15. S.T. Monteiro and Y. Kosugi, Applying particle swarm intelligence for feature selection of spectral imagery, 7th Intl. Conf. on Intelligent Systems Design and Applications (ISDA), pp. 933-938, Rio de Janeiro, Brazil, 2007.
    [PDF] [BibTex]
  16. S.T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and K. Oda, Prediction of Sweetness and Nitrogen Content in Soybean Crops from High Resolution Hyperspectral Imagery, IEEE Intl. Geoscience and Remote Sensing Symposium (IGARSS), vol. 5, pp. 2263-2266, Denver, USA, 2006.
    [PDF] [BibTex]
  17. S.T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and K. Oda, High Resolution Hyperspectral Imagery for Estimating Sweetness Content in Soybean Crops, Institute of Electronics, Information and Communication Engineers General Conference (IEICE), BS-6-13, SE-24, Tokyo, Japan, 2006.
    [PDF] [BibTex]
  18. S.T. Monteiro, H. Nakamoto, H. Ogawa, and N. Matsuhira, Robust mobile robot map building using sonar and vision, JSME Conference on Robotics and Mechatronics (ROBOMEC), 2P1-N-052, pp. 1-4, Kobe, Japan, 2005.
    [PDF] [BibTex]
  19. S.T. Monteiro, K. Uto, Y. Kosugi, and E. Watanabe, Towards Applying hyperspectral Imagery as an Intraoperative Visual Aid Tool, 4th IASTED Intl. Conf. on Visualization, Imaging and Image Processing (VIIP), pp.483-488, Marbella, Spain, 2004.
    [PDF] [BibTex]
  20. S.T. Monteiro and C.H.C. Ribeiro, Learning of mobile robot navigation based on autonomously acquired maps, XXIII Brazilian Computer Society Conference (SBC), v. 1, pp. 152-162, Campinas, Brazil, 2003. [in Portuguese]
    [PDF] [BibTex]
  21. S.T. Monteiro and C.H.C. Ribeiro, Acquisition of cognitive maps for the Magellan Pro mobile robot, XIV Brazilian Automation Conference (CBA), pp.1543-1548, Natal, Brazil, 2002. [in Portuguese]
    [PDF] [BibTex]

WORKSHOPS

  1. S.T. Monteiro, F. Ramos, P. Hatherly, Learning CRF models from drill rig sensors for autonomous mining, NIPS Workshop: Learning from Multiple Sources with Applications to Robotics, Whistler, Canada, 2009. (oral)
    [PDF] [Video]
  2. S.T. Monteiro, K. Uto, Y. Kosugi, and E. Watanabe, Towards a Surgical Tool Using Hyperspectral Imagery as Visual Aid, MICCAI Workshop: Augmented Environments for Medical Imaging and Computer-aided Surgery (AMI-ARCS), pp.97-103, Rennes, France, 2004. (oral)
    [PDF]

OTHER

  1. S.T. Monteiro, Automatic Hyperspectral Data Analysis: A machine learning approach to high dimensional feature extraction, Saarbrucken, Germany: VDM Verlag, 2010.
    [Amazon] [BibTex]
  2. F.T. Ramos, S.T. Monteiro, P.J. Hatherly, “Iron Ore Rock Recognition Trials,”Technical Report: ACFR-TR-2009-001, University of Sydney, 2008.
    [PDF] [BibTex]

PATENTS

  1. Y. Kosugi, S.T. Monteiro, K. Uto, and E. Watanabe, “Means and equipments for surgical viewing aid,” US patent application 2004/604,743. Japan Patent 2006-085688.

CITATIONS

- Google Scholar: S.T. Monteiro

- Microsoft Academic Search: S.T. Monteiro

- CNPq Lattes Platform: ST. Monteiro

* COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are retained by authors or by publishers. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. Personal use of this material is permitted. However, these works may not be reposted without the explicit permission of the copyright holder. For information about permission to reprint/republish/reuse this material, please contact the correspondent original publisher.


usyd

  Home | Publications | Research | Teaching | People | About me | Contact